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Toward Practical and Accurate Touch-Based Image
Guidance for Robotic Partial Nephrectomy
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Abstract—Partial nephrectomy involves removing a tumor
while sparing surrounding healthy kidney tissue. Compared to
total kidney removal, partial nephrectomy improves outcomes for
patients but is underutilized because it is challenging to accom-
plish minimally invasively, requiring accurate spatial awareness
of unseen subsurface anatomy. Image guidance can enhance
spatial awareness by displaying a 3D model of anatomical
relationships derived from medical imaging information. It has
been qualitatively suggested that the da Vinci robot is well suited
to facilitate image guidance through touch-based registration. In
this paper we validate and advance this concept toward real-
world use in several important ways. First, we contribute the
first quantitative accuracy evaluation of touch-based registration
with the da Vinci. Next, we demonstrate real-time touch-based
registration and display of medical images for the first time.
Lastly, we perform the first experiments validating use of touch-
based image guidance to improve a surgeon’s ability to localize
subsurface anatomical features in a geometrically realistic phan-
tom.

Index Terms—Robot-assisted surgery, image guidance, robot
calibration, image registration, kidney surgery.

I. INTRODUCTION

TREATMENT of renal cell carcinoma typically requires
surgically removing the tumor and surrounding kidney

tissue. Some cases require radical nephrectomy, in which
the entire kidney is removed. However, for patients with
localized tumors, the American Urological Association and
the European Association of Urology recommend nephron-
sparing partial nephrectomy, in which only part of the kidney
is removed [1], [2]. Compared to radical nephrectomy, partial
nephrectomy leads to improved long-term patient outcomes
by allowing the patient to retain some kidney function and
reducing the risk of chronic kidney disease [3], [4]. Partial
nephrectomy remains underutilized, however, likely due to the
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Fig. 1. Our image guidance display, as seen from the surgeon console of a
clinical da Vinci Si. As the surgeon lightly traces the kidney surface with the
robot instrument tip, our system collects surface data (red dots, downsampled
for visualization) that can be used to register segmented preoperative image
data to the organ surface. This provides the surgeon with the locations of
critical subsurface anatomical structures.

extreme technical challenges associated with the procedure,
especially when performed minimally invasively [5], [6].

Robot-assisted partial nephrectomy (RAPN) performed us-
ing the da Vinci Surgical System (Intuitive Surgical, Inc.,
Sunnyvale, CA, USA) can help mitigate many challenges of
minimally invasive partial nephrectomy [7], but RAPN does
not inherently address the challenge of relying primarily on
direct visualization via an endoscopic camera for surgical
navigation. This results in a limited field of view that inhibits
surgeons’ ability to intuit the anatomical context of the surgical
environment, i.e. the location of surgical tools relative to
critical, frequently subsurface, anatomical features. Locating
these anatomical features, such as large blood vessels and the



IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS 2

tumor itself, is critical to safely and successfully performing
RAPN. Surgical image guidance can help surgeons locate
these features, providing additional anatomical context by
accurately registering 3D anatomical volumes (typically gen-
erated by segmentation of preoperative computed tomography
(CT) or magnetic resonance (MR) images) to the surgical
environment and displaying this information to the surgeon
during the procedure (see Fig. 1). Accurate image guidance
has the potential to improve patient outcomes by making
localization, dissection, and isolation of critical vascular and
organ structures, as well as correct margin selection, easier for
surgeons.

It has been suggested that the da Vinci robot’s kinematics
could be used to achieve accurate registration for image guid-
ance [8], [9]. In this work, we create such a system, quantify its
performance, and demonstrate its ability to improve an experi-
enced surgeon’s performance. Our image guidance system uses
the instruments of the da Vinci robot itself as 3D localizers for
digitizing anatomical surfaces. By lightly tracing an instrument
tip over the surface of the target anatomy while recording the
robot’s joint values, our system generates a set of points on the
surface of the anatomy. Our system computes a surface-based
registration between the preoperative images and the patient’s
anatomy during the surgery. Using this registration, we then
display a 3D model of the patient’s anatomy segmented from
the preoperative imaging to the surgeon in the da Vinci’s
surgeon console, enabling the surgeon to visualize the location
of subsurface anatomy that is not visible via the endoscope
(see Fig. 1). By using the inherent capabilities of the da
Vinci for registration, our system provides an image guidance
approach that is well suited to the clinical workflow.

This paper presents our touch-based image guidance system
and analyzes its accuracy. We also describe practical steps for
deploying it in the operating room using a clinical da Vinci Si
system. We present a series of phantom experiments to provide
a thorough accuracy analysis of a touch-based registration for
image guidance. Finally, we present a phantom experiment
demonstrating the utility of our image guidance system for
improving an experienced surgeon’s ability to localize subsur-
face anatomical features important in partial nephrectomy. By
providing practical and accurate image guidance, our method
has the potential to improve surgeons’ ability to accurately
accomplish partial nephrectomy. Success in achieving this has
the potential to increase utilization of partial nephrectomy,
thereby providing enhanced health outcomes to many more
patients.

II. RELATED WORK

Image guidance has previously been recognized as poten-
tially useful in facilitating partial nephrectomy, and numerous
research groups have sought to implement such image guid-
ance systems. One approach to image guidance in laparoscopic
partial nephrectomy involved inserting fiducial markers on
barbed needles directly into the kidney [10], [11]. The kidneys
and fiducials were then imaged and segmented intraoperatively
to enable registration by direct point-to-point correspondence
between the fiducials in the segmented images and those same

fiducials in the endoscopic video. While providing highly
accurate, real-time guidance, these fiducial-based methods
increase the risk and complexity of surgery by requiring
foreign objects to be manually inserted into the kidney by the
surgeon. Furthermore, the need for intraoperative imaging and
segmentation represents a time-intensive interruption of the
surgical workflow. Indeed, the robotic system is not compatible
with intraoperative CT, and thus one would have to fully
remove the robot to register the image set.

A less invasive approach to registration is fiducial-free man-
ual registration. In manual registration, the surgeon is tasked
with visually aligning 3D images or models to the surgical
field. In [12] and [13], preoperative MR and CT images and
3D anatomical models were displayed alongside endoscopic
video in the da Vinci’s surgeon console, and surgeons could
manually adjust the orientation of the images to match the
endoscopic view. Ukimura et. al. [14] and Nakamura et.
al. [15] presented augmented reality systems in which surgeons
manually aligned translucent 3D anatomical models directly
overlaying the image feed from a laparoscopic endoscope.
These studies found that surgeons benefited from having
preoperative imaging information more readily available with
respect to the live camera images. However, this approach in-
creases cognitive burden on surgeons and provides no accuracy
guarantees. Indeed, relying on human hand-eye coordination
and spatial reasoning to perform registration makes accuracy
highly dependent on an individual user’s skill, resulting in
low registration precision, as evidenced by large variations in
registration accuracy from trial-to-trial in these studies.

To enhance precision and facilitate objective accuracy, oth-
ers have sought to employ stereo endoscopes for instrument
tracking and registration to patient anatomy. Su et. al. [16]
proposed a multi-step CT-to-endoscope registration method
where the segmented kidney surface was first manually aligned
with the stereoscopic video. Surface-based video tracking
techniques were then used to refine and stabilize the regis-
tration during system operation. Pratt et. al. [17] utilized an
augmented endoscope overlay by first identifying a matching
feature in both of the stereo images and the preoperative
scans to align the translational degrees of freedom and then
using a rolling-ball interface to manually align the rotational
degrees of freedom. We direct the reader to [18] for a
thorough overview of research aimed at using computer vision
algorithms to automatically detect and track the da Vinci
instruments in the stereo endoscope video. These vision-based
approaches are limited by a requirement for persistent, direct
line of sight between the endoscope camera and either the
anatomical surface or the surgical instruments. During surgery,
line of sight is often obstructed by blood, smoke, and other
surgical tools. Furthermore, endoscope-based methods typi-
cally require accurate tracking of the endoscope position itself
to localize tracked objects in the surgical field. Accurate en-
doscope tracking usually requires an external tracking system
and a calibration process to determine the rigid transformation
from the tracked frame to the camera frame, such as the
method presented in [19]. Some researchers have sought to
augment camera-based tracking methods by combining them
with either geometric or kinematic information to improve
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accuracy [20]–[22]. These results show promise and warrant
further investigation, but have yet to fully address the above
limitations of endoscope-based methods.

The kinematic information inherently available in the da
Vinci surgical system represents a means of 3D localization
that relies neither on intraoperative use of external trackers
nor on processing endoscopic video. Previous research found
that the da Vinci’s active joints (which control motion of the
laparoscopic instruments during operation) can be localized
with sufficient accuracy for image guidance; however, the
accuracy of the passive setup joints (used for gross manip-
ulator positioning) was not suitable [23]–[25]. Kwartowitz
et. al. [25] proposed to address this shortcoming by using a
“hybrid” tracking scheme that combines two tracking modali-
ties (specifically kinematic tracking and optical tracking) to
more accurately track the multiple manipulators of the da
Vinci in a common coordinate system. In this hybrid tracking
scheme, the base frames of the active kinematic chains are
registered to external, optically tracked frames attached to the
base of the da Vinci. Thus, all base frames can be localized
within the coordinate system of the optical tracker and the
manipulator tips can then be kinematically tracked relative to
their respective base frames. Fiducial localization experiments
in [26] later validated the accuracy of hybrid tracking with
the da Vinci for image guidance applications. In this paper,
we implement this hybrid tracking approach as part of a
new calibration method that also simultaneously estimates
kinematic parameters of the da Vinci system.

Kinematic tracking of the da Vinci instruments has also
shown particular promise in combination with “drop-in” ul-
trasound probes. In [27], registering the image frame of the
ultrasound to the kinematic frames of the robot enabled the
ultrasound plane to be displayed in the live endoscopic video.
Researchers also combined automatic detection of the robot
instruments in ultrasound images [28] with kinematic tracking
to produce semi-autonomous ultrasound guidance that tracked
instrument motions [29]. Later work in [30] demonstrated
registration between kinematically tracked ultrasound and pre-
operative CT images for application to partial nephrectomy.
The feasibility of this ultrasound-based registration technique
in the context of the operating room is, however, inherently
coupled to the accuracy of intraoperative segmentation of the
ultrasound images, and represents a skill- and time-intensive
addition to the surgical workflow. As an alternative, the touch-
based method examined in this work uses the da Vinci’s kine-
matically tracked instruments directly to digitize anatomical
surfaces to enable registration.

The idea of a touch-based registration for image guidance
with the da Vinci system was first introduced by Ong et. al. [8].
During a partial nephrectomy case, the instrument tool tip
was lightly traced over the kidney surface while recording the
robotic joint values; the data was processed postoperatively
to generate a sparse set of surface points that were used
for a standard surface-based registration. The concept showed
qualitative merit; however, the authors noted they were unable
to perform quantitative analysis of the touch-based method
due to the unavailability of a ground truth comparison during
the human trial. Building upon this concept, we have further

assessed surface-based registration with the da Vinci using
rigid phantoms [31]; however, thorough analysis of registration
error for this touch-based method using anatomically accurate
phantoms has thus far remained unstudied. In this paper we
take essential steps toward practical and accurate deployment
of this touch-based registration concept by presenting a system
that is suitable for deployment in a real-world operating
room and accomplishes registration in real time. We also
rigorously evaluate the accuracy of touch-based registration
on anatomically accurate soft-tissue phantom models, and
demonstrate its ability to improve the localization accuracy
of an experienced surgeon.

III. SYSTEM OVERVIEW

A. Preoperative System Setup and Calibration
Preoperative calibration of the da Vinci Si system is neces-

sary to achieve sufficient kinematic tracking accuracy to enable
our touch-based registration. Figure 2 shows a clinical da Vinci
Si deployed for preoperative calibration, which takes place
as the da Vinci system is draped prior to surgery. Additively
manufactured reference frames designed to interface with the
da Vinci system are clamped rigidly to the distal ends of the
setup arms (Fig. 2, upper right). These reference frames are
equipped with reflective optical tracking markers. To maintain
the sterile field, the reference frames are first clamped without
reflective spheres before deploying the sterile drapes. After
draping the robot, sterile, disposable, commercially available
spheres are attached to mounting posts through the sterile
plastic drapes. This process ensures a sterile barrier between
the clamping system and the sterile surgical environment.

As shown in Fig. 2 (lower right), the da Vinci instruments
grasp sterile, optically tracked calibration tools. Each calibra-
tion tool is previously pivot-calibrated so that the position
of the interface with the instrument tip is accurately known
relative to the optical markers. This enables measurement of
the instrument position relative to the optically tracked refer-
ence frames at the base of each serial chain. Our system uses
a Polaris Spectra (Northern Digital Inc., Waterloo, Ontario,
Canada) optical tracking system, which is currently available
for use in many operating rooms, including any operating
room at our institution. The Polaris system has a reported
tracking accuracy of 0.25 mm, and for this work, we consider
measurements with the optical tracker to be ground truth [32].

To collect calibration data prior to surgery, a robot oper-
ator simply moves the calibration tools throughout the robot
workspace while recording data. In our current implementa-
tion, the operator momentarily pauses at discrete locations to
ensure synchronization of optical tracking and robot encoder
data streams. This is necessary only because we did not have
direct access into the robot software to enable synchronization
between the data streams of the optical tracker and robot.
In future clinical implementations, the markers can simply
be waved in front of the optical tracking system to collect
calibration data. This data collection process is repeated for
each da Vinci manipulator and each instrument to be used
during surgery.

Our system employs a hybrid tracking technique [25] for
calibration that enables the da Vinci’s manipulators to be



IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS 4

kinematically tracked relative to external, optically tracked
reference frames (rather than the internal base frames of the da
Vinci system). Using hybrid tracking bypasses the compara-
tively inaccurate setup joints of the da Vinci system, shortening
the effective kinematic chain and improving tracking accuracy
beyond the inherent capabilities of the da Vinci system. Our
calibration process also simultaneously calibrates the param-
eters of the kinematic model using standard techniques [33]–
[35]. The result of calibration is that each robotic instrument
can be accurately tracked with respect to the location of the
reference frames attached at the base of the active serial chain.

B. Touch-Based Registration

Our touch-based registration method aligns two sets of data:
a densely sampled point set describing the organ surface in
image space and a sparsely sampled point set of surface data
describing the organ surface in physical space. The dense
image space point set is obtained preoperatively from volu-
metric imaging. For the experiments presented in this paper,
the kidney surface was manually segmented from CT images
using 3D Slicer, an open-source medical image computing and
visualization software platform [36]. In the future, however,
when an image guidance system like ours is developed into
a commercial product, it is likely that manual segmentation
would be replaced by an automatic segmentation algorithm.
Any existing or future segmentation algorithm would be
straightforward to incorporate into the framework described
in this paper, since our system assumes only the existence of
a segmentation without regard for how the segmentation was
accomplished.

The physical space point set is obtained intraoperatively
by lightly tracing the surface of the patient’s organ with the
tip of the da Vinci’s instrument. We track the instrument’s
tip position in physical space during this process using the
previously calibrated kinematics. Surface tracing is quick and
non-disruptive to surgical workflow: acquiring a sufficient
number of surface points for accurate registration requires only
about 30 seconds. After tracing, the data are automatically
downsampled to exclude data points within 2 mm of neigh-
boring points to eliminate variations in point cloud density
caused by variable tracing speed. This results in a set of points
in physical space that lie on the surface of the patient’s kidney.

Previous work concluded that the physical-space data used
for surface-based registration should include at least 28% of
the anterior surface area of the kidney to ensure accurate
registration [37]. Therefore, once surface tracing is complete,
our system automatically analyzes the tracing data to verify
that the tracing covers a sufficient area. Our system determines
the surface area corresponding to a tracing by constructing a
surface mesh from the tracing data using the ball-pivoting sur-
face reconstruction algorithm [38] (illustrated in Fig. 3). The
area of the reconstructed surface is compared to the kidney’s
surface area, which is determined from the preoperative CT
images.

Registration between the image space point set with the
physical space point set is computed using the globally optimal

iterative closest point (GoICP) algorithm [39]. GoICP does
not require user initialization and as such is not subject to
suboptimal initialization concerns associated with standard
ICP algorithms. The resulting registration between the image
space and the physical space relates knowledge of the patient’s
anatomy present in the preoperative images to the current
position of the robot with respect to the patient.

C. Real-Time Data Streaming and Visualization

Using the computed registration, we display the position of
anatomical structures segmented from preoperative imaging
to the surgeon in real time directly in the da Vinci surgeon
console (see Fig. 1).

We built our image guidance system as a submodule of 3D
Slicer, an open-source medical image computing and visual-
ization platform that enables patient image segmentation, pre-
operative planning, and real-time model rendering for image
guidance [36]. Our system interfaces with the clinical da Vinci
Si application programming interface (API) [40] through a data
acquisition module built with the open-source Plus Toolkit [41]
that streams kinematic data output by the API to 3D Slicer
using the standardized OpenIGTLink messaging protocol [42].
This enables the endoscope camera view and graphical models
of the da Vinci’s manipulators in the image guidance display
to track the movement of the physical instruments in real time.
Our image guidance (see Fig. 1) is displayed directly in the da
Vinci surgeon console through the console’s TilePro interface.

IV. SYSTEM VALIDATION EXPERIMENTS

We first evaluate the efficacy of our calibration method to
improve the overall kinematic accuracy of the da Vinci robot.
We then evaluate the accuracy of our touch-based registration
method.

A. Calibration Accuracy

We wish to determine the number of measurements that
must be collected during preoperative setup to ensure good
calibration results. In the context of robot calibration, this
number is generally difficult to predict, as it varies from system
to system and also depends on the measurement method
used [43]. We performed a series of trials to determine the
relationship between tracking accuracy and the number of
measurements used in calibration, as described below.

For our touch-based application, the da Vinci instrument tip
serves as the localizer. Given that surface-based registration
relies only on discrete points of position data, only the
positional (not rotational) accuracy of the localizer needs to
be considered. Therefore, the accuracy of our system can
be quantified by the fiducial localization error (FLE) of the
da Vinci instruments, i.e. the distance between the model-
predicted tip location and the true tip location:

FLE =
∥∥probot

model − probot
true

∥∥ . (1)

In practice, the FLE cannot be directly measured because
our model-predicted position is measured in a different co-
ordinate frame from our “true” position (as measured by the
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Fig. 2. Hybrid tracking implemented with the da Vinci Si in the operating room. Optically tracked markers (top right) are rigidly clamped to the base of
each manipulator, and sterile tracking spheres are attached to the markers over the robot drapes ensuring sterility. Calibration is achieved by gripping sterile
calibration objects (bottom right) in the manipulators (or pressing them onto the endoscope) and waving them in front of the tracker preoperatively.

Fig. 3. Surface reconstruction from surface tracing data. A. Original point
set from an example robotic instrument tracing. B. Reconstructed surface for
surface area computation to ensure adequate model coverage.

optical tracker). However, it is possible to indirectly estimate
the expected value of the FLE from these data, as described
below. The transformation between the two coordinate frames
(the robot and the optical tracker) can be estimated from a
standard, rigid, point-based registration between the model-
predicted positions and the true measured positions [44]. The
error associated with such a registration can be quantified
by the fiducial registration error (FRE), which is the root-
mean-square error in the alignment of the registered points.
Performing numerous registrations using different sets of point
samples provides a good estimate for the expected value of the
FRE for registrations between the two frames. The expected
value of the FRE can be used to estimate the expected value
of the FLE, according to the following relationship derived in
[44]:

〈FLE2〉 = 〈FRE2〉
(1− 2/N)

, (2)

where N is the number of points used in the registration
and the angle bracket operator denotes the expected value

of a random variable. This formulation relies on standard
assumptions that the components of FRE are independent,
isotropic, 3D normal random variables.

Our evaluation data set comprised 130 calibration mea-
surements, collected at distinct poses representing a sparse
sampling of the entire da Vinci Si active workspace. Each
calibration measurement consists of a set of robot joint values
and a corresponding Cartesian position, measured in the op-
tical tracker’s workspace. All data was collected using the da
Vinci’s EndoWrist Large Needle Driver instrument.

To determine the relationship between the model-predicted
position accuracy and the number of data points used in model
calibration, we performed a Monte Carlo cross-validation
analysis of the evaluation data set. Each iteration of the cross-
validation was performed as follows:

• A number M ∈ {10, 15, 20, . . . , 95, 100} of “training
points” were selected uniformly at random from the
complete set of 130 points.

• The kinematic model was calibrated using the training
points.

• K = 30 “validation points” were selected uniformly at
random from the remaining 130−M points.

• A number N ∈ {5, 6, 7, . . . , 19, 20} of “registration
points” were selected uniformly at random from the
validation points. This process was repeated 1000 times
for each value of N , resulting in a total of 16, 000 distinct
sets of registration points per iteration.

• Using each set of registration points, a rigid point-based
registration between the (calibrated) model-predicted po-
sitions and the measured “true” positions was performed.

• The mean value of FLE for the calibrated system was
computed from the average FRE of each registration
according to Eq. (2).

This process was repeated a total of 1000 times for each
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Fig. 4. Fiducial localization error (FLE) of the da Vinci Si vs. the number
of measurements used for calibration of the hybrid tracking model. The red
area indicates the standard deviation for each respective trial. Only marginal
improvements to accuracy can be seen past M = 60.

34% Error 
Reduction

Fig. 5. Distribution of RMS errors between the model-predicted robot tip
position using hybrid tracking and the ground truth, optically tracked tip
position. A significant decrease in error is seen when using our calibration
method (red) over using the nominal robot parameters (blue). Results are for
1000 calibration trials with M = 60 measurements per trial.

value of M . Figure 4 shows the results of this analysis, which
indicates that using more than 60 data points to compute the
hybrid tracking calibration offers only marginal improvements
to localization accuracy.

Figure 5 shows the accuracy improvement of the calibrated
da Vinci model compared to the nominal model from [25]. The
mean and standard deviation of the calibrated system’s FLE
are 0.95 mm and 0.14 mm, respectively, representing a 34%
reduction in mean localization error. While no well-defined
localization accuracy threshold exists for image guidance ap-
plications, it is clear that increased accuracy is always desired.
Our calibrated system accuracy is comparable to prior methods
used to track the absolute position of the da Vinci’s instrument
tips (1.31 mm in [24] and 1.39/1.95 mm for PSM1/PSM2 in
[25]).

We wish to emphasize that the accuracy values reported here

Fig. 6. Optically tracked phantom platform used for evaluating registration
accuracy. Surface data for registration is acquired by tracing the phantom
surface (illustrated as red dots). The location of the phantom relative to the
tracked platform is known, enabling evaluation of our touch-based registration
technique.

reflect only the deviation between the model-predicted position
of a robot manipulator and the measured position (i.e. where
the robot “thinks” the manipulator is versus where it truly
is). These accuracy results do not describe the accuracy with
which a surgeon can direct the da Vinci manipulators during
teleoperation (i.e. where the surgeon wants the manipulator
to be versus where it truly is). While touch-based image
guidance relies on a highly accurate model-predicted position,
teleoperation with visual feedback and a human in the loop
does not.

B. Registration Accuracy

We evaluated the accuracy of our touch-based registration
method in a series of experiments using a commercially
available synthetic kidney model (SynDaver Labs, Tampa, FL,
USA) that accurately reflects the geometry and mechanical
soft-tissue properties of a human kidney. For our experiments,
the model was fixed to an optically tracked platform, as shown
in Fig. 6.

Prior to experiments, the entire platform was CT scanned
using an xCAT ENT Scanner (Xoran Technologies LLC,
Ann Arbor, MI, USA) using a section thickness of 0.3 mm.
The kidney surface as well as the optical tracking markers
were manually segmented from the CT images using 3D
Slicer [36]. The kidney surface segmentation was used to
produce the required image space point set for registration.
The segmentation of the optical tracking markers was used to
compute the ground truth pose of the kidney model relative
to the makers, which were optically tracked in the operating
room.

To acquire data in physical space, an experienced urologic
surgeon thoroughly traced the entire anterior surface of the
kidney phantom using a Large Needle Driver instrument in
a calibrated da Vinci Si while our system recorded tool tip
position data. The resulting data set comprised 1241 evenly
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Fig. 7. An example registration result using our touch-based registration
technique. The heat map shows the TRE over the entire model surface. Red
points represent the surface tracing used for registration.

spaced position measurements. From this large data set, we
randomly generated 700 smaller continuous tracing intervals.
The size of each sub-interval was randomly chosen from a
discrete, uniform distribution to be between 200 and 400 po-
sition measurements. All of the 700 tracings met or exceeded
the minimum surface area threshold.

For each of the 700 tracings, we performed registration
using GoICP, mapping the segmented kidney model into the
robot’s workspace. We then compared the registration to the
ground truth pose of the kidney phantom, as measured using
the optically tracked experiment platform. To evaluate the
quality of each computed registration, we compared the vertex
positions of the registered kidney model to the corresponding
vertex positions in the tracked, ground truth model. The target
registration error (TRE) at each vertex of the registered model
was computed as the distance between that vertex and the
corresponding vertex of the ground truth model.

Figure 7 shows an example registration with the TRE
visualized as a heat map over the entire surface. The red
lines shown in the figure represent the tracing (comprising 276
points in this example) of the physical kidney surface used for
registration. In the region of the kidney where surface data was
collected with the robotic instrument tip, TRE is approximately
2 mm while RMS TRE over the entire kidney surface is 2.75
mm. The TRE tends to increase as the distance from the data
collection area increases, as should be expected.

To evaluate the overall consistency and reliability of our
registration technique, we computed the RMS TRE over the
entire kidney surface for all 700 tracings, as shown in Fig. 8.
The average RMS TRE over all of the 700 registrations was
3.69 mm with standard deviation 0.61 mm. Note that while
we performed registration using only a small number (200–
400) of data points collected on the anterior kidney surface,
we have reported RMS TRE over the entire kidney surface (at
∼175,000 mesh vertices). As opposed to considering TRE at a
few points in the vicinity of the surface tracings, these results
more realistically depict errors that can be expected over the

Fig. 8. Distribution of RMS TRE (computed over the entire kidney surface)
for 700 trials of our touch-based registration method. In each trial, tracings
covered at least 28% of the anterior kidney surface.

surgical work volume when using touch-based registration.

V. IMAGE GUIDANCE PHANTOM EXPERIMENT

To demonstrate the utility of our system in the operating
room, we performed a phantom experiment comparing the
surgeon’s accuracy in localizing subsurface features both with
and without the image guidance provided by our system.
Figure 9 shows the setup for this experiment.

A challenge of many robotic surgical procedures is the
localization of subsurface anatomy, making it difficult for
the surgeon to know where to cut to remove lesions or
avoid vessels. This is especially true in robot-assisted partial
nephrectomy. During removal of perirenal fat surrounding the
patient’s kidney, the surgeon must identify the locations of the
renal artery, the renal vein, the ureter, and the tumor. All of
these features are hidden beneath the fat layer. The fat must
be carefully dissected, and the anatomical features must be
uncovered while avoiding unnecessary damage which could
result in blood loss or positive tumor margins.

We manufactured a soft, realistic silicone kidney phantom
based on patient CT imaging. Eight acrylic spheres approxi-
mately 12 mm in diameter were set in the silicone material
as it cured to serve as localization targets for experiments.
Four targets were completely endophytic while the remaining
4 targets were at least partially exophytic. The model was
fixed to the same optically tracked platform used in our
registration experiments. The entire platform was CT scanned
and segmented as before in Sec. IV-B. Optical tracking of the
phantom platform was used solely to determine the ground
truth positions of the embedded targets in the operating room
to enable post hoc analysis of the surgeon’s localization
accuracy.

During the experiment, the phantom was partially covered
in a 10 mm thick layer of SynDaver synthetic fat. The fat
completely covered all exophytic targets such that none of the
localization targets were directly visible to the participating
surgeon. Approximately 40% of the anterior surface of the
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Fig. 9. Experimental setup to measure a surgeon’s accuracy in localizing subsurface features with and without our image guidance system. Targets embedded
in a phantom kidney model were localized using our system with a clinical da Vinci Si. The display presented to the surgeon during the procedure is shown
in the right column.

Fig. 10. Error in localizing embedded endophytic and exophytic targets in a phantom kidney model. Localization was performed with and without image
guidance while fat partially obscured the kidney surface (including all exophytic targets). Localization was then performed without image guidance and without
the fat layer (allowing direct visualization of the full kidney surface, including exophytic targets). Results indicate that our system increases surgeon accuracy
in localizing subsurface features (p � 0.001).

phantom was left uncovered to simulate the results of fat
dissection required at the beginning of a partial nephrectomy
procedure.

Prior to the experiment, the participating surgeon reviewed
CT images of the phantom to develop a “mental map” of
the locations of subsurface targets. The surgeon was allowed
to reference the CT images throughout each phase of the
experiment.

In the first phase of the experiment, the surgeon attempted
to localize the subsurface targets based solely on his interpre-
tation of the CT images. To localize a target, the surgeon was
instructed to point (using the calibrated da Vinci instrument)
to the perceived location of the center of each of the 8
targets. Each time the surgeon pointed to a target, our system
recorded the transformation from the instrument tip to the
system’s world coordinate frame to use for analysis. The
surgeon repeated this pointing task 5 times for a total of 40
measurements.

In the next phase of the experiment, the surgeon repeated

the subsurface localization task using our image guidance
system. The surgeon first lightly traced the exposed portion
of the kidney surface to collect surface data for our touch-
based registration protocol. With the image guidance enabled
by the registration, the surgeon repeated the above process of
identifying target locations with the robotic instrument.

The final phase of the experiment served to establish a
baseline accuracy for the target localization task. The image
guidance was disabled, and the fat layer was completely
removed from the phantom. With direct visualization of the
entire kidney surface through the da Vinci’s endoscope, the
surgeon then repeated the target localization process as before.
Note that with direct visualization of the kidney surface, 4
of the target spheres were at least partially visible while the
remaining 4 targets were completely concealed beneath the
surface.

For all phases of the experiment, localization accuracy
was evaluated by comparing target locations identified by
the surgeon to the corresponding optically tracked, ground



IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS 9

truth locations. For a particular surgeon-identified location
and ground truth pair, the localization error was taken as the
minimum distance between the Z axis extracted from the end
effector tip transform (the pointing direction of the instrument
tip) and the ground truth target position (see the inset in Fig.
10). Figure 10 summarizes the localization accuracy results
for each phase of the experiment.

Performing a pairwise t test on the set of all errors with
image guidance and the set of all errors without image
guidance showed a significant reduction in error. Mean error
was reduced by 67% (from 9.2 mm to 3.0 mm) by using image
guidance (p� 0.001).

For brevity, references to measurements made “with image
guidance” or “without image guidance” in this discussion
will refer specifically to those measurements made with fat
partially obscuring the kidney surface. The term “direct visu-
alization” refers to measurements made with all fat removed
from the kidney surface (and no image guidance).

The measurements made with direct visualization provide
helpful context for interpreting the localization accuracy re-
sults with and without image guidance. Direct visualization did
not improve the surgeon’s localization accuracy of endophytic
tumors when compared to the scenario without image guid-
ance. This result indicates that increasing the visible surface
area of the kidney did not help the surgeon form a more
accurate mental registration between the CT images and the
surgical scene. Using image guidance, on the other hand,
enabled a substantial improvement of localization accuracy
for endophytic targets when compared to both the scenario
without image guidance and that with direct visualization.
Taken together, these results demonstrate the utility of our
image guidance system for enabling accurate localization of
subsurface features, specifically indicating that image guidance
improved the surgeon’s localization ability beyond natural
human ability.

With regards to the exophytic targets, direct visualization
unsurprisingly resulted in substantially improved localization
accuracy when compared to localization without image guid-
ance (when the exophytic targets were completely obscured
by fat cover), but direct visualization offered only slightly
better accuracy than using image guidance. It is crucial to note,
however, that direct visualization of exophytic tumors is very
unlikely in a true clinical scenario. Surgeons rarely remove fat
covering a tumor during partial nephrectomy for two reasons:
(i) the fat provides a safe grasping point for manipulating and
removing the tumor, and (ii) dissecting fat attached directly
to the tumor dramatically increases the risk of unintentionally
puncturing the tumor. Thus, image guidance was nearly as
accurate as direct visualization while potentially being much
safer.

While these results show great promise for our image
guidance system, the current study was limited to one surgeon
subject. Future work will be needed to explore whether the
ability to accurately trace the kidney surface or to accurately
identify subsurface features varies from subject to subject.
Anecdotally, we have not observed large differences in these
skills among either engineer or physician co-authors of this
paper, but quantification of this anecdotal observation will be

necessary in the future.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a practical and easily imple-
mented image guidance system for the da Vinci family of
robotic systems. Specifically, we proposed and tested a new
method of accurately estimating required tracking parameters
through calibration, achieving submillimetric absolute kine-
matic tracking accuracy for the first time with any da Vinci
robot. We then presented the first quantitative accuracy eval-
uation of touch-based registration with the da Vinci, using an
anatomically accurate SynDaver kidney model. We presented
a system that incorporates these advancements to bring this
concept toward real-world use. Finally, we demonstrated the
utility of our system in the operating room in the first vali-
dation of touch-based image guidance to improve a surgeon’s
ability during a subsurface target localization experiment.

The results of this work indicate a promising application
for robotic partial nephrectomy which may increase the adop-
tion of this underutilized alternative to total kidney removal;
however, several significant challenges remain to be addressed
before touch-based image guidance with the da Vinci can be
fully realized in the operating room. The ex vivo experiments
in this work provide a valuable proof of concept, but moving
forward, it is crucial to perform in vivo evaluation of our image
guidance system. In particular, we believe it may be useful to
examine the effect of external forces applied to the da Vinci
manipulators by the patient body wall and the insufflation
system on kinematic tracking accuracy. Additionally, as prior
works have noted, factors including patient positioning [45],
[46], peritoneal insufflation [47], arterial clamping [48], and
kidney dissection [8], potentially cause organ deformation
that can negatively affect registration accuracy when using
preoperative images. Future work will be needed to address
the effects of organ deformation that occurs throughout the
surgical procedure. Substantial progress on these topics has
been made (e.g., [8], [9], [49]) and can potentially be in-
corporated into our system in the future, particularly when
accurate algorithms become computationally efficient enough
for real-time use in a system like ours. Nonetheless, our results
show that even rigid registration alone improves the ability
of a surgeon to localize unseen subsurface objects in partial
nephrectomy. Localizing these objects with confidence before
cutting may, in the future, help to shift clinical decision making
so that many more patients can receive the lifelong benefits
of partial nephrectomy.
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