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Abstract. Robotic manipulators operating in unstructured environments such as
homes and offices need to plan their motions quickly while relying on real-world
sensors, which typically produce point clouds. To enable intuitive, interactive, and
reactive user interfaces, the motion plan computation should provide high-quality
solutions quickly and in an anytime manner, meaning the algorithm progressively
improves its solution and can be interrupted at any time and return a valid solu-
tion. To address these challenges, we combine two paradigms: (1) asymptotically-
optimal sampling-based motion planning, which is effective at providing anytime
solutions but can struggle to quickly converge to high quality solutions in high di-
mensional configuration spaces, and (2) optimization, which locally refines paths
quickly. We propose the use of interior point optimization for its ability to perform
in an anytime manner that guarantees obstacle avoidance in each iteration, and we
provide a novel lazy formulation that efficiently operates directly on point cloud
data. Our method iteratively alternates between anytime sampling-based motion
planning and anytime, lazy interior point optimization to compute high quality
motion plans quickly, converging to a globally optimal solution.

1 Introduction

Robotic manipulators are entering unstructured environments, such as homes, offices,
hospitals, and restaurants, where robots need to plan motions quickly while ensuring
safety via obstacle avoidance. Motion planning in such settings is challenging in part be-
cause the robot must rely on real-world sensors such as laser scanners, RGBD sensors,
or stereo reconstruction, which typically produce point clouds. In addition, enabling in-
tuitive, interactive, and reactive user experiences requires that the robot generate plans
of high quality as quickly as possible, without necessarily knowing in advance the max-
imum time allocatable to motion planning. Hence, motion planning in such settings
should be implemented as an anytime algorithm, meaning the algorithm progressively
improves its solution and can be interrupted at any time and return a valid solution.

To enable fast, anytime, asymptotically-optimal motion planning in point clouds, we
propose to blend two popular motion planning paradigms: (1) sampling-based motion
planning and (2) optimization-based motion planning. Sampling-based motion planners
can directly use point cloud data by incorporating appropriate collision detection algo-
rithms [19] and can optimize a cost metric in an asymptotically optimal manner [12].
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However, sampling-based motion planners in practice can be slow to converge and fre-
quently return paths in finite time that are far from optimal, especially for problems with
higher dimensional configuration spaces [10]. In contrast, optimization-based motion
planners are often very fast [21, 23, 20, 11], but typically do not converge to globally
optimal solutions, do not operate in an anytime manner (since, even when initialized
with a feasible solution, their intermediate iterations may consider robot configurations
that are in collision with obstacles), and are inefficient when using large point clouds.
In this paper, we introduce a new optimization approach to motion planning based on
interior point optimization [25, 24], which has unique properties that enable anytime
motion planning and efficient handling of large point clouds. By integrating our new
interior point optimization formulation with a sampling-based method, our approach
quickly computes locally optimized plans in an anytime fashion, and continues to re-
fine the solution toward global optimality for as long as time allows.

Our new method, Interleaved Sampling and Interior point optimization Motion Plan-
ning (ISIMP), interleaves global exploration with local optimization (see Fig. 1). The
method starts with global exploration by building a graph using an asymptotically opti-
mal motion planner, such as k-nearest Probabilistic Roadmap (PRM*) [12], until it finds
a collision-free path. It then uses our lazy interior point optimization formulation to re-
fine the path found by the sampling-based method. The algorithm then iterates between
(1) resuming the sampling-based motion planner until a new better path is found and
(2) running interior point optimization on this new path. The sampling-based motion
planning phase of each iteration explores globally, discovering other homotopy classes
in configuration space, as well as escaping local minima in the path cost landscape.
The interior point optimization phase in turn allows the method to provide a high qual-
ity locally-optimized motion plan based on the best path found by the sampling-based
method. Either phase can be interrupted at any time and still return a valid, collision-
free result. Interleaving these phases provides higher quality motion plans earlier than
asymptotically optimal sampling-based motion planning algorithms alone. In this way,
our method preserves guarantees which are not provided by most optimization-based
motion planning algorithms—namely completeness and asymptotic optimality—all in
an anytime fashion and designed specifically to work efficiently on point cloud data.

ISIMP is based on interior point optimization, a type of local optimization that has
properties critical to achieving fast, anytime motion planning for robotic manipulators.
Interior point methods solve optimization problems by only considering feasible points
in each iteration of the method. These methods typically incorporate constraints into
the objective function by adding barrier functions, continuous functions whose value
on a point increases to infinity as the point approaches the boundary of the feasible
region. These methods adjust weights on the barrier functions over time so the so-
lution converges to a locally optimal solution of the original objective function. We
apply interior point optimization to refining motion plans and show that it is fast (like
other motion plan optimizers, e.g., [21, 23, 20, 11, 13, 18]) while providing three addi-
tional important properties. First, our interior point optimization implementation is an
anytime algorithm: each intermediate iteration of the optimization algorithm considers
only collision-free robot configurations, so the optimizer always returns a feasible mo-
tion plan even when interrupted. Second, interior point optimization can be formulated
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Fig. 1. ISIMP interleaves sampling-based and optimization-based motion planning. (a) ISIMP
first performs sampling-based motion planning until a feasible motion plan is found from start to
goal. (b) It then uses interior point optimization to locally optimize the plan. (c) Sampling-based
motion planning resumes until a shorter plan is found. (d) The shorter plan is then optimized.
The method iterates in this fashion and can be interrupted at any time after step (a) and return
a feasible solution that gets better over time. (e) An example sampling-based plan found for a
Baxter robot in a point cloud sensed by Microsoft Kinect. (f) That plan locally optimized.

to efficiently and directly handle large point clouds, which we accomplish using a lazy
evaluation of constraints. This eliminates the time-consuming process of transform-
ing the point cloud into more complex geometric primitives or meshes, which is often
required by other optimization-based motion planners to be efficient. Third, our inte-
rior point optimization is designed to optimize path length, a commonly desired metric
which is often used by sampling-based motion planners. Many existing optimization-
based motion planners [21, 23, 20, 11] are designed to optimize metrics such as smooth-
ness, which do not satisfy the triangle inequality and hence are incompatible with cost
requirements of asymptotically-optimal sampling-based motion planners.

We evaluate the efficacy of ISIMP for a Baxter robot’s manipulator arm using a
Microsoft Kinect to sense point cloud data in a cluttered environment. We demonstrate
ISIMP’s fast, anytime, and asymptotically optimal performance in comparison to other
motion planners that only use either sampling or local optimization.

2 Related Work

In sampling-based motion planning, a graph data structure is constructed incrementally
via random sampling providing a collision-free tree or roadmap in the robot’s configu-
ration space. These algorithms provide probabilistic completeness, i.e., the probability
of finding a path, if one exists, approaches one as the number of samples approaches in-
finity. Examples include the Rapidly-exploring Random Tree (RRT) [16] and the Prob-
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abilistic Roadmap (PRM) [13] methods. These methods have been adapted in many
ways, including to take advantage of structure in the robot’s configuration space and by
modifying the sampling strategy [6, 15].

Adaptations of these algorithms can provide asymptotic optimality guarantees in
which the path cost (e.g., path length) will approach the global optimum as the num-
ber of algorithm iterations increases. Examples include RRT* and PRM* [12] where the
underlying motion planning graph is either rewired or has asymptotically changing con-
nection strategies. Other asymptotically optimal algorithms grow a tree in cost-to-arrive
space [10], identify vertices likely to be a part of an optimal path [1], or investigate the
distributions from which samples and trajectories are taken [14]. Lazy collision check-
ing has been shown to substantially improve the speed of these algorithms [9], and in
some cases, near optimality can be achieved while improving speed [22, 7].

Optimization-based motion planning algorithms perform numerical optimization in
a high dimensional trajectory space. Each trajectory is typically encoded as a vector
of parameters representing a sequence of robot configurations or controls. A cost can
be computed for each trajectory, and the motion planner’s goal is to compute a trajec-
tory that minimizes cost. In the presence of obstacles and other constraints, the prob-
lem can be formulated and solved as a numerical optimization problem. Examples in-
clude taking an initial trajectory and performing gradient descent [21], using sequential
quadratic programming with inequality constraints to locally optimize trajectories [23],
and combining optimization with re-planning to account for dynamic obstacles [20].
These methods typically produce high quality paths but are frequently unable to escape
local minima, and as such are subject to initialization concerns. To avoid local minima,
some methods inject randomness [11, 3]. The solutions of these existing optimization-
based motion planners may converge to locally optimal motion plans that include robot
configurations that are in collision with obstacles. This limitation can be partially cir-
cumvented through techniques such as restarting the optimization with multiple differ-
ent initial paths (e.g., [23]), but such approaches are heuristic and provide no guarantee
that a collision-free trajectory will be found in general.

Several methods aim to bridge the gap between sampling-based methods and opti-
mization. Some methods use paths generated by global planners and refine them using
shortcutting or smoothing methods adaptively or in post processing [18, 8]. GradienT-
RRT moves vertices to lower cost regions using gradient descent during the construction
of an RRT [2]. More recently, local optimization has been used on in-collision edges
during sampling-based planning to bring them out of collision and effectively find nar-
row passages [4]. In contrast, our method is using the local optimizer not to find narrow
passages, but to improve the overall quality of the paths found by the sampling-based
planner, while relying on the sampling-based planner’s completeness property to dis-
cover narrow passages. BiRRT-Opt [17] utilizes a bi-directional RRT to generate an
initial trajectory for trajectory optimization, demonstrating the efficacy of a collision-
free initial solution for local optimization. Our method differs in that interior point opti-
mization provides collision-free iterates allowing it to work in an anytime fashion, and
our method continues beyond a single local optimization to provide global asymptotic
optimality.
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3 Problem Definition

Let C be the configuration space of the robot. Let q ∈ C represent a single robot con-
figuration of dimensionality d and Π = {q0,q1, . . . ,qn−1} represent a continuous path
in configuration space in a piecewise linear manner by a sequence of n configurations.
Such paths may need to satisfy generalized, user-defined inequality constraints. These
constraints could include joint limits, end effector orientation requirements, etc, where
each constraint may be represented by the inequality g(Π) ≥ 0 for some constraint
specific function g. Let the set of all such user-defined constraints be J.

In the robot’s workspace are obstacles that must be avoided, and which are being
represented by a point cloud. We consider each point in the point cloud an obstacle
and let the set of all such points be O. We also define the robot’s geometry as a set of
geometric primitives S. An individual geometric primitive s ∈ S could be represented as
a mesh, bounding sphere, capsule, etc.

A path is collision-free if the robot’s geometry S over each edge (qi,qi+1), i =
0, . . . ,n− 2, does not intersect an obstacle o ∈ O. Formally, we require a function
clearance(qi,qi+1,s,o) which is a function parameterized by a path edge (qi,qi+1),
a geometric primitive s, and an obstacle o. This function, formally defined in Sec. 4,
is continuous and monotonically increasing, has positive value when o is not in col-
lision with s over the edge, negative value when o penetrates into s on the edge, and
0 at the boundary. A collision-free path then becomes a path for which each edge
has non-negative clearance for all o ∈ O and s ∈ S. This requirement can be repre-
sented as an additional set of inequality constraints, which we define as K, wherein
clearance(qi,qi+1,s,o)≥ 0, for all o ∈ O and s ∈ S.

Our objective is to find a collision-free path for the robot from the robot’s start
configuration qstart to a user specified goal configuration qgoal that satisfies all the con-
straints and minimizes path length. We define path length by length(Π), the sum of
Euclidean distances in configuration space along the path. We use the sum of Euclidean
distances because it is a commonly used metric for path length and because it satis-
fies the triangle inequality property required by asymptotically optimal sampling-based
motion planners (unlike other metrics such as sum of squared distances). This optimal
motion planning problem can be formulated as a nonlinear, constrained optimization
problem:

Π
∗ = argmin

Π

length(Π)

Subject to:
clearance(qi,qi+1,s,o)≥ 0, 0≤ i < n−1, ∀ o ∈ O, ∀ s ∈ S
g(Π)≥ 0, ∀ g ∈ J
q0 = qstart
qn−1 = qgoal

(1)

where Π ∗ is an optimal motion plan. To solve this optimization problem, we present an
efficient, anytime, iterative algorithm in which the solution asymptotically approaches
Π ∗.
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4 Method

ISIMP integrates ideas from both sampling-based and optimization-based motion plan-
ning. The method interleaves interior point optimization steps with sampling-based mo-
tion planning steps to achieve fast convergence. The top level algorithm, Alg. 1, runs in
an anytime manner, iterating as time allows and storing the best path found as it runs.

Algorithm 1: ISIMP
Input: qstart, qgoal, O, optimization convergence threshold ∆Π

Output: motion plan Π∗

1 Sampling-based motion planner path cost csamp← ∞

2 Π∗← /0
3 while time remaining do
4 Πsamp← GlobalExplorationStep(O,csamp,qstart,qgoal)
5 csamp← cost(Πsamp)
6 Π∗← minCostPlan(Πsamp,Π

∗)
7 Π∗← LazyAnytimeInteriorPointOptimization(Πsamp,O,∆Π ,Π∗)

8 end

The first step of each iteration is the global exploration step, wherein ISIMP exe-
cutes a sampling-based motion planner until a new path is found that has cost lower than
csamp, the best cost found by the sampling-based motion planner up until that point. The
sampling-based motion planner returns the new path Π and updates csamp. In the sec-
ond step of each iteration, the interior point optimization step, our method executes an
interior point local optimization method to locally optimize Π . The local optimizer con-
stantly compares against the best path found, and updates it if a better path is found dur-
ing the optimization. At the end of the interior point optimization it returns the best path
found. The algorithm then iterates, returning to global exploration with the sampling-
based motion planner, and optimizing better paths as they are found. If the algorithm is
interrupted, it returns the best path found up until that time.

4.1 Global Exploration using Sampling-based Motion Planning

The global exploration step uses a sampling-based motion planner to expand a graph
until a new path is found that is of lower cost than any path it has previously found. The
sampling-based motion planner maintains a graph G = (V,E), where V is a set of ver-
tices which represent collision-free configurations of the robot and E is a set of edges,
where an edge represents a collision-free transition between two robot configurations.

To expand the graph G, our method is designed to use an asymptotically optimal
sampling-based motion planner. Although many methods would work, we implement
ISIMP with both k-nearest Probabilistic Roadmap (PRM*) [12] and RRT# [1]. PRM*
samples random configurations in the robot’s configuration space, locates their k near-
est neighbors (where k changes as a function of the number of vertices in the graph),
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and attempts to connect the configurations to each of its neighbors. RRT# is a state-
of-the-art asymptotically optimal sampling-based motion planner, which incrementally
builds a tree identifying which vertices are likely to belong to an optimal path. In each
global exploration step, the asymptotically optimal sampling based motion planner ex-
ecutes until it finds a collision-free path better than the current best, at which point the
optimization step begins.

4.2 Lazy Interior Point Optimization

Local optimization for motion planning is typically performed by constructing a high
dimensional vector out of the state variables of the problem to be optimized. In our
case, this would be a vector representing the motion plan we are optimizing, i.e. if
we have a path with n configurations of dimensionality d, then each motion plan can
be represented as an n× d dimensional vector. Optimization can then be viewed as
iteratively moving this vector through its high dimensional space to minimize the cost.
In the case of constrained optimization, there are regions of this space which represent
areas where the constraints are satisfied (i.e., feasible or unconstrained space) and areas
where the constraints are not satisfied (i.e., infeasible or constrained space).

Many other classes of optimization methods (such as penalty methods and sequen-
tial quadratic programming) allow their intermediate solutions to move through infeasi-
ble space, i.e. collide with obstacles or violate joint limits, with the hope that the even-
tual locally optimal solution is feasible. Interior point methods, by contrast, require their
intermediate solutions to always be feasible [25, 24]. This is typically accomplished
through the use of barrier functions. A barrier function works by introducing a continu-
ous function whose value approaches infinity at the edge of the constrained space. The
intermediate iterations of optimization are then influenced by the barrier functions to
avoid the constrained regions. As the optimization iterates, the width of these barrier
functions is reduced such that the solution is allowed to approach the constrained space
but not to enter it. This is the property that we leverage to create an anytime solution
inside the optimization framework. Each intermediate solution of the optimization is
always a collision-free motion plan and as such can be returned early if necessary.

We build an interior point optimization framework around a black box interior point
optimizer. The optimizer is responsible for generating intermediate, feasible solutions,
and our framework updates the state for the optimizer as a function of those intermediate
solutions to allow for faster computation. Details of our lazy interior point optimization
framework can be seen in Alg. 2.

We optimize our paths with respect to path length. The collision avoidance con-
straints are formulated over each edge in the path, i.e. the linear interpolation through
configuration space between the two configurations. We define our clearance function
(as in equation (1)) as a function of the minimum distance between the point in the
point cloud and the geometric primitive interpolated through the workspace as deter-
mined by the robot’s forward kinematics. This formulation generates a large number of
constraints (# of robot geometric primitives× # of edges in the path× # of points in the
point cloud). Because the optimization must consider each constraint, fewer constraints
results in quicker optimization times. In the following paragraphs, we discuss our novel
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Algorithm 2: Lazy Anytime Interior Point Path Optimization
Input: initial path Πinit, obstacle set O, convergence threshold ∆Π , best found path so far

Π∗

Output: best path found Π∗

1 Kenab← /0, Π̂ ←Πinit, Π ←Πinit
2 while time remaining do
3 Πnext← takeInteriorPointOptimizationStep(Kenab,Π)
4 Ocollide← inCollisionPoints(Πnext,O)
5 if Ocollide 6= /0 then
6 Kenab← Kenab

⋃
Ocollide

7 Π ←Πinit
8 else
9 if discontinuousConstraintDetected(Kenab,Πnext) then

10 {k,k+1}= discontinuousJacobianEdge(Kenab,Πnext)
11 Πinit← bisectEdge(Πinit,k,k+1)
12 Π ←Πinit
13 else
14 if converged(Πnext,Π̂ ,∆π ) then
15 return minCostPlan(Πnext,Π̂ ,Π∗)
16 end
17 Π̂ ← minCostPlan(Πnext,Π̂)

18 Π∗← minCostPlan(Π̂ ,Π∗)
19 Π ←Πnext

20 end
21 end
22 end
23 return Π∗

approach to reducing the number of constraints that are considered by the optimization
by adding constraints in a lazy fashion.

Improving Performance through Lazy Constraint Addition Instead of using the
entire set of obstacle-based inequality constraints K, which contains constraints for each
point in the point cloud, we instead define a subset Kenab as the enabled constraint set.
This set, which starts out empty, is added to as points in the cloud become relevant to
the optimization (see Fig 2 and Alg. 2 lines 5-7).

We start the optimization with an empty enabled constraint set (Fig. 2(a)). We then
take an optimization step, modifying the motion plan (Fig. 2(b)). At each iteration of
such a step, we check the robot’s path for collision with the whole point cloud (an oper-
ation which is computationally inexpensive compared with optimizing with each point
as a constraint). If the path is found to be in collision, we identify which points are in
collision, and add those points to the enabled constraint set, and restart the optimiza-
tion (Fig. 2(c)). In the next iteration, the optimizer avoids collision with the previously
added points (Fig. 2(d)). The process then repeats until a collision-free convergence is
achieved. In this way, only points which prove to be relevant over the course of the
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Fig. 2. An example of the way our method adds constraints from the point cloud in a lazy fashion,
using a 2D disk robot in a point cloud (grey points are un-enabled constraint points) (a) Example
unoptimized path returned by the PRM* and used to initialize the optimizer. The optimizer starts
out with an empty enabled constraint set. (b) During optimization, the robot’s path is found to
be in collision with the point cloud (orange points). (c) The in-collision points of the cloud are
immediately added to the enabled constraint set (black points) and optimization is restarted. (d)
The optimizer converges to a collision-free path using the enabled constraint set, which is smaller
than the set of all points.

optimization are taken into account by the optimizer. This improves the computational
speed of the optimization algorithm drastically, as in practice relatively few points turn
out to be relevant to collision detection in an otherwise large point cloud.

Enabled Constraint Cutoff Function One of the most time consuming parts of the
optimization is computing the constraint Jacobian for the constraints in Kenab, which has
a row for each constraint and a column for each state variable, i.e. d× (n−1) columns.
Even if a constraint is relevant to the optimization as a whole, and as such included in
Kenab, sometimes the point represented by the constraint is far away from the specific
robot geometric primitive or edge representing an entry in the Jacobian. To leverage
this intuition and further speed up the evaluation of the constraints in Kenab, we use
a cutoff function (3) as our clearance function (see Fig. 3(a)) rather than the distance
itself, allowing the user to set a radius, r > 0, as a “look-ahead” distance. Let

d = min dist(s,qi,qi+1,o), (2)

clearance(d,r) =


2
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where min dist is the minimum distance between the point o and the geometric prim-
itive s when s is swept along the space curve defined by the transition between config-
urations qi and qi+1, i.e. as the robot arm is moving from configuration qi to qi+1.
Equation 3 sends the clearance function’s derivative to zero at r, allowing us to spar-
sify the constraint Jacobian and only consider points in Kenab which are within distance
r from the robot’s geometry at a given time. This allows even greater speedup to the
optimization, as the constraint set Kenab, which is already greatly reduced in size from
the full point cloud, is still larger than needs to be considered in many entries of the
constraint Jacobian.
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(c) Bisection

Fig. 3. (a) The cutoff function used as the clearance function for our obstacle avoidance con-
straints. The function flattens out after a certain distance so as to allow us to only consider points
in Kenab which are within a specified radius r. (b-c) An example with a manipulator (shown in
red). (b) If a sphere bounding the robot geometry is swept between two configurations and pro-
duces a curve such as the blue curve here, then when d1 and d2 are equal, the minimum distance
between sphere s1 swept from qk to qk+1 and point cloud point o is not necessarily differentiable.
(c) When such a case is detected, an intermediate configuration is added into the path with its
own constraint. In this way, both d1 and d2 are used in different constraints and are both locally
differentiable.

Another challenge of our constraint formulation is that the minimum clearance be-
tween a given robot geometric primitive along an edge and a point in the point cloud is
not guaranteed to be differentiable. This is because the robot’s arm is tracing a nonlinear,
complex curve through the workspace, even though the edge is linear in configuration
space. This means that in some places, the closest position on that curve to an obsta-
cle point can be discontinuous as the edge is perturbed (see Fig. 3(b)), i.e., there are
multiple closest positions on the curve which are equidistant to the point cloud point.
Using distance over the nonlinear edge allows us to ensure obstacle avoidance, but can
cause numerical problems during the optimization. To address this issue, when we are
evaluating the derivative of a constraint and find it to be discontinuous over an edge, we
bisect that edge and start the optimization anew (see Fig. 3(c), and Alg. 2 lines 9-12). In
this way, after enough bisections the discontinuity is avoided. In practice, we observed
relatively few bisections.
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4.3 Asymptotic Optimality

Asymptotic optimality of our method falls naturally from the use of an asymptotically
optimal motion planner as the underlying sampling-based motion planner, as long as
three conditions are met.

1. The sampling-based motion planner adds at least one node to its roadmap between
adjacent interior point optimization calls.

2. The interior point optimization does not make the roadmap’s solution worse.
3. The interior point optimization completes in finite time.

The first is dependent on the implementation of the sampling-based motion planner.
The implementations we use guarantee this property. The second can be handled by
discarding any solutions which are worse than the best that has been found at any point
in time. The third can be guaranteed with an external time limiter on the optimization.

5 Results

We implement the sampling-based motion planning portion of our method using the
OMPL framework [5], including OMPL’s PRM* and RRT# implementations. For the
purposes of this section, we will refer to ISIMP with PRM* as ISIMP, and ISIMP
with RRT# as ISIMP-#. For the black box local optimizer, we use the IPOPT software
framework, an open source interior point optimization library1 [24].

We consider a scenario involving motion planning for the left arm of a Baxter robot
(see Fig. 6). For the purposes of computing constraints in the optimization and obsta-
cle avoidance in the sampling-based motion planner, we represent the geometry of the
robotic manipulator arm as a set of 9 bounding spheres along the links of the robot’s
arm. The choice of bounding spheres allows us to conservatively represent the robot’s
geometry while enabling fast distance calculations between the geometric primitives
and the points in the point cloud.

We evaluate ISIMP’s performance in a real-world point cloud obtained from a Mi-
crosoft Kinect sensor (see Fig 6). We evaluate our method utilizing point clouds of
differing sizes, ≈ 10,000 points, ≈ 25,000 points, and ≈ 100,000 points, the smaller
of which were generated via downsampling the original point cloud. We generated 50
motion planning scenarios at random in the scene using random start and goal config-
urations, using rejection sampling to remove trivial scenarios for which a straight-line
naive trajectory would not collide with the point cloud.

We compare our method to the popular anytime asymptotically-optimal sampling
based motion planners PRM* [12] and RRT# [1] using OMPL [5], and to a popular
trajectory optimization method, Traj-Opt [23], using their distributed source code. All
results were generated on an 3.40GHz Intel Xeon E5-1680 CPU with 64GB of RAM.

1IPOPT requires definitions of a cost function to be minimized (path length in our case),
constraint functions (J and K or Kenab), and cost and constraint Jacobians. It then handles the
optimization iterations itself. Note that default settings will allow intermediate solutions to po-
tentially exist in infeasible space. We set the settings to prevent infeasible intermediate solutions.
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5.1 Comparison to Asymptotically-optimal Sampling-based Motion Planners

To evaluate how well ISIMP performs in an anytime manner, we compare our method
to PRM* and RRT# with the three point cloud sizes. In Fig. 4(a), we compare the best
path found by ISIMP, up until a given time, to the best path found by PRM* at that same
time. We average this over 50 runs, and plot the ratio of the PRM*’s path length to our
method’s path length. A value greater than one indicates that our method has a shorter
path, and a value less than one indicates that PRM* has a shorter path. Similarly, in Fig.
4(c), we compare ISIMP-# with RRT#.

As another way of evaluating anytime performance, we stop ISIMP’s execution at
1 second and then measure how long PRM* requires to produce a solution of equal
or better cost. In the majority of cases, PRM* in 5 minutes failed to produce a path
of shorter length than ISIMP’s solution at 1 second. For the cases where PRM* did
produce a better solution in less than 5 minutes, we average the results and show them
in Fig. 4(b).
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Fig. 4. (a) The path length ratio over time between PRM* and ISIMP, averaged over 50 runs with
random start and goal configurations. Results are shown for various sizes of point clouds. A value
greater than one indicates ISIMP has a shorter path, and value less than one indicates PRM* has
a shorter path. (b) Another way to visualize anytime results. ISIMP is stopped after 1 second, and
displayed is how many times longer PRM* ran to achieve a comparable result. In many cases,
PRM* had still not found a comparable result after 5 minutes, in which case we did not include
that run in this analysis. The included runs were averaged. The number of included runs is shown
in white overlaid on each bar. (c) The path length ratio over time between RRT# and ISIMP-#.

As can be seen, ISIMP outperforms PRM* on path length by a large percentage for
a long duration (Fig. 4(a)), and ISIMP-# outperforms RRT# similarly, but by a smaller
percentage (Fig. 4(c)).

5.2 Comparison to an Optimization-based Motion Planner

We also compare ISIMP’s performance to that of a state-of-the-art optimization-based
motion planner, Traj-Opt [23], for which open-source code compatible with the Baxter
robot is available. The Traj-Opt distribution has several recommended ways to handle
point cloud data input, including: (1) converting the points in the point cloud into down-
sampled cubic boxes, and (2) constructing a polygonal mesh out of the point cloud, and
then simplifying the mesh through decimation.
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As with most trajectory optimization methods, the question arises of how to gen-
erate an initial trajectory. We evaluate Traj-Opt using two approaches to initialization
recommended in the optimization-based motion planning literature. First, we initialize
with a straight line trajectory in configuration space with 10 configurations (the number
of configurations used for initialization in the example code), which starts in collision.
Second, we seed Traj-Opt with the first path found by our method from the sampling-
based motion planner, which is augmented with duplicate configurations if it starts with
fewer than 10 total. This initialization starts out collision-free. We refer to Traj-Opt
with a box environment representation and a straight line initialization as TO-BS, TO-
MS refers to a mesh environment with a straight line initialization, TO-BR refers to
a box environment with a sampling-based motion planner initialization, and TO-MR
refers to a mesh environment with a sampling-based motion planner initialization.
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Fig. 5. (a) The percent of trials for which a feasible path has been found over 50 trials. (b) The
percent of trials for which feasible, collision-free, paths have been found over time. The ISIMP
variations find feasible paths for 98% of the trials within 0.5 seconds (and 100% of trials within
30 seconds). The Traj-Opt variations take significantly longer (≈ 5.5–7 seconds) to find feasible
paths for some trials, and fail to find feasible paths at all for the others. (TO-BR and TO-MR are
not shown in (b) because they are seeded with already feasible solutions from a sampling-based
motion planner.)

The comparison between our method and Traj-Opt reveals three things. First, Traj-
Opt can fail to converge to a collision-free path in a significant percentage of cases in
our scenario. See Fig. 6 for an example. Traj-Opt returned locally optimal paths that
were infeasible likely due to the complex objective function landscape with many in-
collision local minima induced by the real-world point cloud data. Fig. 5(a) shows the
percentage of problems for which each method found a feasible solution. Our method
found feasible solutions to 100% of planning problems within 30 seconds, while vari-
ations on Traj-Opt returned locally optimal paths that were infeasible in a significant
percentage of planning problems. This is even true in the case where the initialization
was collision-free (TO-BR and TO-MR).

Second, Traj-Opt, when it did produce a valid collision-free solution, takes between
5.3 and 7.1 seconds to initialize the problem, load the scene, and optimize the trajectory.
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(a) PRM* Path (b) Optimized PRM* Path (c) Alternate View

(d) Traj-Opt Initialization Path (e) Traj-Opt Converged Path (f) Alternate View

Fig. 6. (a) ISIMP’s collision-free initialization found by the sampling based motion planning
algorithm. (b-c) Two views of ISIMP’s collision-free trajectory after interior point optimization,
which is still collision-free and passes behind the obstacles. The length of the path has been
reduced by more than 36%. (d) Traj-Opt is initialized with a straight line trajectory, passing
through the point cloud obstacles. (e-f) Traj-Opt’s converged trajectory which is still in collision
due to being trapped in a poor quality local minimum.

By contrast, our method initializes the problem, loads the scene, and produces its first
valid collision-free solution in an average of 0.41s for 10k points, 0.43s for 25k, and
0.63s for 100k (See Fig. 5(b)). Traj-Opt’s slower relative speed is mostly due to the
time required to initialize the problem and pre-process the point cloud data, with Traj-
Opt’s optimization itself taking on average less than 1 second.

Third, when Traj-Opt converged to a collision-free solution it did produce high qual-
ity paths. For the cases where Traj-Opt produced a collision-free solution, the path
lengths of its solutions were comparable to the path lengths produced by ISIMP, with
path lengths varying by less than 5% across the methods.

6 Conclusion

We presented a method designed to achieve the benefits of both local optimization
and global sampling-based motion planning when planning motions for a robotic ma-
nipulator arm with point cloud sensor data. ISIMP interleaves asymptotically optimal
sampling-based motion planning with anytime interior point local optimization. De-
signed to work with point cloud data directly, our novel lazy interior point optimiza-
tion formulation allows us to bring the path quality benefits of local optimization to
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the anytime performance of sampling-based methods, while providing completeness
and global asymptotic optimality guarantees not present in current optimization-based
motion planning methods. The results demonstrate that our method, which combines
interior-point optimization and asymptotically optimal sampling-based motion plan-
ning, outperforms asymptotically optimal sampling-based motion planning alone, pro-
ducing higher quality motion plans earlier. Our method outperforms an optimization-
based method, Traj-Opt, in the percentage of collision-free solutions found and in the
time to the first valid solution.

In the future, we plan to evaluate ISIMP on other robotic systems of varying di-
mensionality to further assess its efficacy. We also intend to incorporate more complex
constraints, such as task constraints, into the method and to explore other optimization
objectives, such as clearance from obstacles. Additionally, we will investigate the inter-
esting question of how to best balance the time spent on sampling versus optimizing.
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