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INTRODUCTION 
Concentric tube robots, needle diameter robots composed 
of nested pre-curved tubes, are capable of curving around 
anatomical obstacles to perform surgical procedures at 
difficult-to-reach sites. Concentric tube robots have the 
potential to enable less invasive surgeries in many areas 
of the human body, including the skull base, the lungs, 
and the heart [1]. For these robots, in order to safely 
control and plan motions that automatically prevent 
unintended collisions with the patient’s anatomy, an 
accurate shape model of the entire robot’s shaft is 
required. Accurate prediction of the entire shape of a 
concentric tube robot from its control inputs is 
challenging, and current state-of-the-art shape models are 
often unable to accurately account for complex and 
unpredictable physical phenomena such as inconsistent 
friction between tubes, non-homogenous material 
properties, and imprecisely shaped tubes [2][3]. In this 
work, we present a data driven, deep neural network-
based approach for learning a more accurate model of a 
concentric tube robot’s entire shape. 

Machine learning enables a data driven approach to 
the shape estimation of concentric tube robots. Neural 
network models have been successfully used to more 
accurately model the forward kinematics and inverse 
kinematics of concentric tube robots [4][5], and an 
ensemble method has been applied to learn and adapt a 
forward kinematics model online [3]. However, these 
models only consider the pose of the robot’s tip. In order 
to successfully plan and execute motions that avoid 
unwanted collisions between the robot’s shaft and patient 
anatomy, a model must accurately predict the entire 
shape of the robot. 
 In this work, we present a deep neural network 
approach that learns a function that accurately models the 
entire shape of the concentric tube robot, for a given set 
of tubes, as a function of its configuration (see Fig. 1). 
The neural network takes as input the robot’s 
configuration, and the network outputs coefficients for 
orthonormal polynomial basis functions in x, y, and z 
parameterized by arc length along the robot’s tubular 
shaft. In this way, a function representing the entire shape 
of the robot can be produced by one feed forward pass 
through the neural network. 

The key insight behind our parameterization is that 
the uncertainty in the physics-based shape models is due 
mainly to uncertainty in curvature and torsion. The arc 
length of the robot’s shape, however, is independent of 
these and as such is generally not subject to the same 
sources of uncertainty. We can leverage this known state 
by parameterizing our shape function by arc length. 

MATERIALS AND METHODS 
In order to learn a shape function for the concentric tube 
robot, data representing the robot’s shape as a function of 
its configuration must be gathered. To gather shape data, 
we utilize a multi-view 3D computer vision technique 
called shape from silhouette [6], in which multiple 
images of the robot’s shape for a given configuration are 
collected from cameras with known position (see Fig. 2). 
The robot’s shaft is then segmented in each image and for 
each pixel in the segmentation a ray is traced out from the 
camera’s position through its image plane. These rays 
then pass through a voxelized representation of the 
world, and voxels that are intersected by rays from every 
camera represent the robot’s shape in the world. We then 
fit a 3D space curve to the voxels using ordinary least 
squares, resulting in a curve that represents the true, 
sensed backbone of the robot. We then train the neural 
network using the sensed backbone as ground truth. 
 Our neural network architecture consists of a feed 
forward, fully connected network, with 5 hidden layers 
of 30 nodes each. We utilize the parametric rectified 
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Fig. 2 We train the neural network using data from a physical 
robot. By taking images from multiple cameras (blue arrows), 
the shape of the robot’s shaft (pink arrows) can be reconstructed 
in 3D using shape from silhouette. 
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Fig. 1 Given a concentric tube robot configuration defined by 
the translations and rotations of the tubes (upper left), our 
neural network (upper right) outputs coefficients for a set of 
polynomial basis functions (lower left) that are combined to 
model the backbone of the robot’s 3D shape (lower right). 



linear unit as our non-linear activation function between 
layers, which we noted provided a slight performance 
improvement over the standard rectified linear unit. 

For a robot consisting of k tubes, we parameterize 
the i’th tube’s state as gi := {g1,i, g2,i, g3,i} = {cos(ai), 
sin(ai), bi} where ai Î (-p, p] is the i’th tube’s rotation 
and bi Î ℝ	is the i’th tube’s translation, as in [5]. We then 
parameterize the robot’s configuration as q = (g1, g2, …, 
gk). This serves as the input to the neural network.
 The network outputs 15 coefficients, c1x, c2x, … c5x, 
c1y, c2y, … c5y, c1z, c2z, … c5z, which serve as coefficients 
for a set of 5 orthonormal polynomial basis functions in 
x, y, and z parameterized by arc length, shown in Table 1. 
This results in three functions, x(q, s), y(q, s), and z(q, s), 
where x(q, s) = len(q) * (c1xP1(s) + c2xP2(s) + … + 
c5xP5(s)), where s is a normalized arc length parameter 
between 0 and 1, and len(q) is the total arc length of the 
robot’s backbone in configuration q. Then y(q, s) and z(q, 
s) are defined similarly with their respective coefficients. 
The resulting shape function is shape(q, s) = <x(q, s), 
y(q, s), z(q, s)>. To evaluate the shape of the robot at a 
given configuration, the neural network can be evaluated 
at q, and the resulting coefficients define a space-curve 
function that can then be evaluated at any desired arc 
length. This, combined with knowledge of the robot’s 
radius as a function of arc length, results in a prediction 
of the robot’s geometry in the world. 
 We first pretrained our model on 100,000 data points 
(configuration and backbone pairs) generated by the 
physics-based model presented in [2]. Such pretraining 
allows us to prevent overfitting on the smaller amount of 
sensed, real world data. 
 We then trained our network on 8,000 data points, 
and we evaluate the network on 1,000 different test data 
points (both sets generated via shape from silhouette). 
We utilize a pointwise sum-of-squared-distances loss 
function and the ADAM [7] optimizer during training. 

Table 1 Coefficients for the orthonormal polynomial basis 
functions generated using Gram-Schmidt orthogonalization. 
P1(s) := 1.7321s, P2(s) := -6.7082s + 8.9943s2, etc., plotted in 
Fig. 1 (lower left). 

RESULTS 
We compare our neural network’s shape computation to 
that of the physics-based model presented in [2]. In Fig. 
3 we plot a histogram of the errors across the 1,000 test 
configurations. For each configuration of our 3-tube 
robot we evaluate the shape of the physics-based model, 
the learned model, and the ground truth from the vision 
system at 20 evenly spaced points along the robot’s shaft. 
We then present the maximum error—the L2 distance of 
the point that deviates from the ground truth the most. 
The error distribution of the learned model is shifted to 
the left compared with that of the physics-based model, 

indicating that the learned model is more likely to 
produce lower error values than the physics-based model. 

DISCUSSION 
In this work we present a learned, neural network model 
that outputs an arc length parameterized space curve. 
This allows us to take a data driven approach to modeling 
the shape of the concentric tube robot and improve upon 
a physics-based model. This may allow for safer motion 
planning and control of these devices in surgical settings 
that require avoiding anatomical obstacles. The model is 
only trained on cases where the robot is operating in free 
space. Accounting for interaction with tissue is the 
subject of future work. We also intend to investigate 
other models and augment the learned model to account 
for other sources of uncertainty in concentric tube robot 
shape modeling, including hysteresis, and plan to 
integrate the learned model with a motion planner and 
evaluate its use in automatic obstacle avoidance during 
tele-operation or automatic execution of surgical tasks. 
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 s s2 s3 s4 s5 
P1(s) 1.7321 0 0 0 0 
P2(s) -6.7082 8.9943 0 0 0 
P3(s) 15.8745 -52.915 39.6863 0 0 
P4(s) -30.0 180.0 -315.0 168.0 0 
P5(s) 49.7494 -464.33 1392.98 -1671.6 696.4912 

10 20 30 40 50
Error (mm)

0

100

200

300

O
cc

ur
an

ce
s

Physics-Based
Learned

Fig. 3 A histogram of the maximum error along the robot’s 
shaft for the learned model and the physics-based model, for 
each of the 1,000 test points. The distribution is shifted to the 
left in the learned model, indicating that it is more likely to 
produce lower error values. The maximum error is 26mm for 
the learned model and 47mm for the physics-based model. 
 


