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Abstract— We present a method that plans motions for a
concentric tube robot to automatically reach surgical targets
inside the body while avoiding obstacles, where the patient’s
anatomy is represented by point clouds. Point clouds can
be generated intra-operatively via endoscopic instruments,
enabling the system to update obstacle representations over
time as the patient anatomy changes during surgery. Our new
motion planning method uses a combination of sampling-based
motion planning methods and local optimization to efficiently
handle point cloud data and quickly compute high quality plans.
The local optimization step uses an interior point optimization
method, ensuring that the computed plan is feasible and avoids
obstacles at every iteration. This enables the motion planner
to run in an anytime fashion, i.e., the method can be stopped
at any time and the best solution found up until that point
is returned. We demonstrate the method’s efficacy in three
anatomical scenarios, including two generated from endoscopic
videos of real patient anatomy.

I. INTRODUCTION

Motion planning can enable surgical robots such as con-
centric tube robots [1] to automatically reach a desired
surgical target while avoiding anatomical obstacles. Com-
posed of nested, pre-curved tubes, concentric tube robots
can curve around anatomical obstacles to reach targets in
highly constrained environments such as the skull base, the
lungs, and the heart [2]. Enabling the robot to safely avoid
anatomical obstacles (such as blood vessels, critical nerves,
sensitive organs, and bones) requires a fast and effective
motion planner, as well as an accurate model of the patient
anatomy. In previous work, such an anatomical model is
typically generated from the segmentation of preoperative 3D
volumetric imaging, such as Computed Tomography (CT)
[3], [4], [5]. However, for surgical procedures that modify
the anatomy, anatomical models created from preoperative
images may quickly become out-of-date and inaccurate,
significantly hindering safe motion planning. By contrast, a
variety of intra-operative endoscopic sensors can be used to
quickly produce point cloud representations of the anatomy.
In this work, we introduce a new motion planning method,
Parallel Sampling and Interior point optimization Motion
Planning (PSIMP). PSIMP quickly produces high-quality
motion plans for concentric tube robots operating in point
cloud anatomical representations.

Point clouds that represent patient anatomy can be gen-
erated during minimally-invasive surgery in a variety of
ways, including via small laser scanners [6], structured light
sensors [7], and generated directly from endoscopic video
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Fig. 1. Our method, PSIMP, takes as input a point cloud representing
patient anatomy (top). PSIMP generates and optimizes motion plans for the
robot to move safely through the point cloud (bottom). A sampling-based
motion planner runs constantly in its own thread (blue box), generating
motion plans over time—represented as collision-free sequences of con-
figurations (2D cartoon representations of the plans are included here for
illustrative purposes). As the motion plans are generated they are placed
in a queue (green box). A thread pool (orange box) then takes each of
the motion plans, and optimization threads (yellow boxes) perform interior
point local optimization on the plans, improving their quality according to
a cost based on clearance from obstacles. If the anatomy has not changed
significantly, multiple motion planning queries can be solved for the initial
point cloud, in real time, allowing the physician to move the robot through
the anatomy safely. If the anatomy changes significantly (e.g., due to the
surgical procedure), a new point cloud can be generated to be used by the
motion planner in subsequent queries.

(see Fig. 1) using computer vision techniques [8], [9], [10].
In contrast to CT imaging, such sensors and techniques can
be repeatedly used intra-operatively, acquiring point clouds
in seconds rather than minutes, and do not rely on ionizing
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radiation (i.e., x-rays), which may be harmful to patients
and clinical staff when used repeatedly. Such techniques
also have advantages over fluoro imaging due to the reduced
radiation exposure and are much cheaper than MRI. As the
anatomy changes, new point clouds can be generated and
used by the motion planner. In this work, we evaluate our
method using point clouds generated via endoscopic video
using a technique called “structure from motion” [11], [12],
but the method can be used directly with point clouds from
any source.

To enable high-quality, fast motion planning for concentric
tube robots when obstacles are represented using point
clouds, PSIMP combines sampling-based motion planning
with local optimization (see Fig. 1). This combines the
benefits of sampling-based motion planning, such as the
exploration of multiple homotopic classes (see Fig. 2), with
the benefits of local optimization, namely the ability to pro-
duce high-quality plans very quickly. We introduce a parallel,
multi-threaded framework, that combines a sampling-based
motion planning thread with a pool of local optimization
threads. As the sampling-based motion planner generates
motion plans, those solutions are placed in a queue of motion
plans that are then locally optimized by a pool of threads that
are running the local optimization method in parallel. This al-
lows the sampling-based motion planner to run uninterrupted,
ensuring that it continues exploring globally, while the local
optimizers are iteratively improving the quality of the motion
plans more quickly than the sampling-based motion planner
is capable of doing on its own.

PSIMP plans motions at rates suitable for interactive use,
returning the first valid motion plan in a fraction of a second
on average, and rapidly improving upon that initial solution
in fractions more. Our local optimization uses interior point
optimization, a class of optimization techniques that guaran-
tee intermediate solutions satisfy constraints (e.g., obstacle
avoidance and joint limits) during optimization [13]. This
property enables the method to run in an anytime fashion,
i.e., the method can be stopped at any time and the best
solution found up until that point will be returned. Our
method leverages a cost function, similar to that in [14],
based on the robot’s clearance from the point cloud that
encourages the avoidance of anatomical obstacles and helps
to produce motions robust to incomplete obstacle knowledge.

We demonstrate the efficacy of PSIMP in three scenarios
in which obstacles are represented via point clouds: an
upper airway environment (near the epiglottis), a colon
environment, and a skull base environment. The upper airway
and colon environments are generated from real endoscopic
video of real patients, while the skull base environment
is generated from synthetic data. We show that combining
local optimization with sampling-based motion planning
outperforms sampling-based motion planning by itself in
each of the anatomical settings. We also demonstrate the
ability of PSIMP to react to a change in the point cloud when
the anatomy is modified during a surgical procedure, which
is not feasible when obstacle representations are generated
solely from pre-operative imaging such as CT scans.

Fig. 2. A top down view of an example scenario wherein the robot is
tasked with passing between vertical columns represented as point clouds.
The sampling-based motion planning phase of the planner allows for the
discovery of different homotopic classes. (Left) The planner may initially
find a solution to the goal point (green) for the robot (blue) that passes very
close to the point cloud (red). (Right) The planner may later in the planning
process find a better homotopic class in which the robot is able to reach the
goal in a safer way, further from points in the point cloud.

II. RELATED WORK

Point clouds have been used in medical procedures in
a variety of ways. Point clouds from stereoscopic cameras
have been used for virtual fixtures in haptic interfaces [15]
and for the registration of a digital overlay for teleoperation
[16]. Soft tissue deformation has been tracked using 3D
plenoptic imaging during autonomous suturing [17]. Point
clouds generated by structure from motion in nasal en-
doscopy have been used for registering endoscopic images to
CT data and overlaying areas of interests on the endoscope
images [8], [10]. We propose the use of point clouds as the
anatomical representation during motion planning, enabling
the obstacle representation to be regularly updated during a
surgical procedure and hence enabling the motion planner to
adapt to changes in the anatomy during surgery.

Concentric tube robots have been proposed for a variety of
surgical tasks [2]. The control of concentric tube robots has
primarily considered computing controls based on desired
tip movements. This includes methods that compute controls
based on the robot’s Jacobian [18], [19] and a Fourier series
based approximation of the robot’s kinematics [20].

Motion planning can enable robots to automatically move
in an environment while avoiding obstacles. A popular mo-
tion planning paradigm is sampling-based motion planning,
which includes methods such as Probabilistic Roadmaps
(PRM) [21] and Rapidly-exploring Random Trees (RRT)
[22], in which a collision-free graph or tree data structure
is incrementally constructed. Many such algorithms provide
a property called probabilistic completeness, i.e., the proba-
bility the algorithm finds a valid motion plan, if one exists,
approaches 1 as the number of samples approaches infinity.
Extensions to these methods have the stronger guarantee of
asymptotic optimality, i.e., the method will converge to a
globally optimal motion plan under some objective function
as the number of samples approaches infinity. Such methods
include RRT*, PRM* [23], BIT* [24], and FMT* [25].

Optimization-based motion planning methods work by
locally optimizing plans numerically in a high dimen-
sional trajectory space. Such methods include CHOMP [26],
ITOMP [27], and Traj-Opt [28]. Recently, we presented
ISIMP, a method that combines local optimization with
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sampling-based motion planning in point clouds for serial
link manipulator arms [29]. Our motion planner in this work,
PSIMP, differs from these prior methods in that we optimize
a different metric. These prior methods optimize either for
path smoothness [26], [27], [28] or for path length [29].
By contrast, here we introduce an anatomical clearance
cost function that encourages motions that avoid anatomical
obstacles by larger distances, increasing plan safety. This also
allows us to simplify the constraint set by leveraging the new
cost function for obstacle avoidance. Additionally, as in [29],
PSIMP employs both sampling-based motion planning and
interior point local optimization, but rather than interleaving
the two, we utilize parallelism to perform both optimization
and sampling simultaneously.

When computing motions for concentric tube robots that
avoid obstacles, a few approaches have been studied. This
includes simplifying the kinematics for fast computation
[30], [31]. Sampling-based motion planning for concentric
tube robots has been studied for skull base surgery. However,
until recently, the previous methods either provided planning
rates that were much slower than required for an intra-
operative setting [32], or required preoperative imaging and
extensive precomputation of a roadmap over the course of
many hours prior to motion planning [4], [33]. The desire
for a reactive anatomical representation precludes the use
of methods that require extensive precomputation. Recently,
a template-based, fast kinematic model was developed for
concentric tube robots, based on an unloaded torsionally
compliant kinematics model, in conjunction with a PRM-
style motion planner which achieves much faster planning
rates [34]. PSIMP uses this new kinematic model to enable
fast shape computations during motion planning. PSIMP
efficiently solves motion planning problems in environments
represented by point clouds by leveraging local optimization
to improve upon PRM-style motion planning alone.

III. PROBLEM DEFINITION

We consider a point cloud P , where P =
{p1,p2, . . . ,pj},pk ∈ R3 for k ∈ {1, . . . , j}, is an
unordered set of j 3D points in the global coordinate frame
lying on the surface of patient anatomy. In the anatomical
environment represented by this point cloud, we consider
a concentric tube robot. The concentric tube robot consists
of N telescoping pre-curved tubes numbered in order
of increasing cross-sectional radius, such that T1 is the
innermost tube, and TN is the outermost tube. Each tube
consists of a straight segment followed by a pre-curved
segment reaching to its tip. We define the location of the
robot in the global coordinate frame, i.e., the position from
which the tubes extend, as xstart ∈ R3 with orientation
vstart ∈ SO(3). Each tube can be inserted linearly starting
at xstart and rotated axially at its base. We define the length
of insertion for tube k as βk ∈ R and the rotational value as
θk ∈ [−π, π). A configuration for the robot then becomes
q = (θi, βi : i = 1, . . . , N) with configuration space
Q = (S1)N × RN .

Given a configuration q ∈ Q, we define the robot’s
backbone shape function as backbone(q, s) : (S1)N ×
RN × R 7→ R3. This function describes the centerline of
the robot as a space curve parameterized by s ∈ [0, 1]
where backbone(q, 0) = xstart and backbone(q, 1)
maps to the 3D position of the tip of the robot in the global
frame for configuration q. This function, combined with
knowledge of the cross-sectional radii of the tubes, allows us
to estimate the shape of the robot shape(q) as the volume in
space occupied by the robot in configuration q. To compute
backbone we use the mechanics-based model developed
by Leibrandt et al. [34].

We define a path as a continuous function σ : [0, 1]→ Q.
The motion planning problem then becomes one of finding
a path such that σ(0) = qstart and backbone(σ(1), 1) =
xgoal, the 3D location of the goal point in the global frame.
Intuitively, this states that σ(0) is the starting configuration of
the robot and σ(1) is a configuration for which the tip of the
robot is at the goal point. We then define a collision-free path
as a path such that p /∈ shape(σ(s)),∀p ∈ P,∀s ∈ [0, 1],
i.e., one such that the shape of the robot along the entire path
does not contain any points in P . Conceptually, this defines
each point in the point cloud as an obstacle, precluding the
need for a more complex geometric representation of the
anatomy. Defining the kinematic constraints of the robot,
such as joint limits, as the general inequality g(σ) ≥ 0,
we can then combine these to define a valid motion plan as
one such that the following constraints are satisfied:

p /∈ shape(σ(s)),∀p ∈ P,∀s ∈ [0, 1]

g(σ) ≥ 0

σ(0) = qstart

backbone(σ(1), 1) = xgoal.

(1)

To enable the computation of high quality motion plans,
we introduce the notion of cost. We choose a cost function
that facilitates safe motion planning by favoring plans that
move the robot’s geometry far from the patient’s anatomy.
This has the benefit of increasing the safety of the plans by
making them robust to actuation noise and to the possibility
of small holes and gaps in the point cloud. Specifically, we
define a function clear(q) = minp∈P sd(shape(q),p),
where sd(shape(q),p) is the signed distance between the
shape of the robot at configuration q and point cloud point
p. The function sd is defined as the positive distance if p
is external to the robot’s geometry, and negative penetration
depth if p is internal to the robot’s geometry. clear(q)
is the minimum such value over all the points in the point
cloud, for a specific configuration. We define the cost of a
configuration q as:

cost(q) =


1

clear(q)
, clear(q) > 0

∞, clear(q) ≤ 0.

(2)

The cost of a path σ then becomes

Cost(σ) =

∫ 1

0

cost(σ(s))ds. (3)
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We next define a motion planning query as the tuple
(P,qstart,xgoal, tmax), where tmax is the maximum time
allotted for the motion planner to solve the query. The goal
is then to produce a valid motion plan that solves the query,
satisfies (1), and has as low of a cost as possible, as defined
by (3).

Multiple queries can be performed, as the physician de-
sires, and P can be updated appropriately as the patient’s
anatomy changes during the procedure. We compute motion
plans with respect to the most recent P .

IV. METHOD

To plan motions for the concentric tube robot in the point
cloud representing the patient’s anatomy, we propose Parallel
Sampling and Interior point optimization Motion Planning
(PSIMP). PSIMP combines sampling-based methods (to
globally explore different routes around anatomical obsta-
cles) with local optimization (to facilitate fast computation
of high quality plans).

A. Method Overview

We begin by using the sampling-based motion planner
PRM* [23], which allows for the discovery of multiple
homotopic classes (see Fig. 2) while planning using an
objective function, (3) in our case, returning better and better
motion plans as computation time increases. It does so while
enforcing that paths obey obstacle avoidance constraints as
well as other kinematic constraints. For the concentric tube
robot model we use, we have kinematic constraints, i.e.,
g(σ) ≥ 0 in (1), associated with maximum and minimum
insertion values for each tube.

At a high level, our method works by continuously running
a PRM* thread which discovers better-and-better paths over
time. PRM* generates paths as a discretized sequence of n
configurations (q0,q1, . . . ,qn−1), such that q0 = qstart and
backbone(qn−1, 1) = xgoal, and n can vary depending on
the path. A continuous motion plan is derived from such
a representation by moving from one configuration to the
next, via linear interpolation in configuration space. Each
time PRM* discovers a better path than it had previously, that
path is placed in a queue of paths that are awaiting local opti-
mization. Simultaneously, a thread pool of local optimization
threads are continuously taking motion plans from the queue
and improving the plans in parallel via interior point opti-
mization. Interior point optimization iteratively optimizes a
path generated by PRM* by moving the configurations in
configuration space to lower the overall cost of the motion
plan. For example, consider Fig. 3, which shows a discretized
motion plan as a set of configurations, pre-optimization
(Fig. 3, top) and post-optimization (Fig. 3, bottom). Interior
point optimization is used due to its property of maintaining
a solution that is collision-free and satisfies the kinematic
constraints during optimization. This process continues for
as long as time allows (i.e., until tmax) and the best path
found up to any given time is retained (see Fig. 1).

Fig. 3. Top: A plan produced early on by the sampling-based planner
passes close to obstacles on its way to a configuration who’s tip touches the
goal point (yellow). Observe that during the motion the robot’s tip stays near
the point cloud (the configurations are overlaid on each other in the image
on the right). Bottom: The intermediate configurations of that plan after
optimization will travel further from obstacles as the robot moves toward
the goal point. Observe that the robot’s tip moves toward the center of the
point cloud, far away from the anatomy, as it travels toward the goal point.
For demonstrative purposes, to the left of each plan visualization is a 2-
dimensional drawing illustrating the concepts. Note, however, that the actual
plan exists as a sequence of configurations in the robot’s 6-dimensional
configuration space.

We next further describe the method’s two submethods,
global exploration through sampling and interior point local
optimization.

B. Global Exploration through Sampling

In our method, we utilize a constantly running PRM* mo-
tion planning thread to explore the configuration space and
discover paths in multiple homotopic classes. Specifically,
we utilize the k-nearest variation of PRM*. PRM* works by
iteratively constructing a graph G = (V, E) as a motion-
planning roadmap, embedded in Q, where V is a set of
vertices which represent collision-free configurations of the
robot and E is a set of edges, where an edge represents a valid
transition between two robot configurations. PRM* randomly
samples configurations in Q, and adds the collision-free
configurations to V (we explicitly limit the sampling to
configurations that respect the kinematic constraints). It then
attempts to connect each newly sampled configuration to its
k nearest neighbors in V , where k is a parameter that scales
with |V| as in [23]. If two configurations can be connected in
a collision-free way via linear interpolation in configuration
space, an edge between the two configurations is added in E .
Because the goal is defined as a location in R3 and not as a
configuration, multiple configurations can satisfy the goal. In
order to discover such a configuration quickly, our method
performs goal biasing by attempting to ensure that a user-
specified percentage of the samples are configurations that
touch the goal with their tip and connect them to G. This is
done using a damped least-squares inverse kinematics (DLS-
IK) controller [35], [36], [18], and allows the method to find
an initial solution quickly.

For each motion planning query, PRM* starts by running
until it finds the first path in G that connects the start
configuration to a configuration that places the tip of the
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robot within some radius around the goal point. When that
first valid path is found, it is placed in the optimization
queue. PRM* then continues sampling configurations, adding
to G, discovering lower cost paths and other configurations
who’s tips reach the goal point. Each time it finds a path
with lower cost than it has found before, that path is placed
in the optimization queue and sampling continues. This
process continues as time allows, i.e., until tmax has been
reached. It is worth noting that although we use PRM* in
our implementation, many sampling-based motion planning
algorithms could be used in a similar way instead.

C. Interior Point Local Optimization

We maintain a queue of motion plans generated by the
PRM* thread. This queue is being operated on by a pool
of local optimization threads in parallel. Anytime one of the
local optimization threads is available, it retrieves the next
motion plan from the queue and performs local optimization
on it. When the thread completes the optimization of a plan,
it returns to the pool and optimizes the next plan in the queue,
if the queue is non-empty. These threads locally optimize
plans generated by the PRM* thread using an interior point
constrained optimization method [13]. At a high level, this
works by taking the initial path, representing it in a high
dimensional path space, and performing gradient descent
with respect to the path’s cost, defined by (3), while keeping
each iteration interior to the feasible set, i.e., respects the
kinematic constraints and is collision-free.

More formally, given a discretized path generated by
the PRM*, (q0,q1, . . . ,qn−1), we concatenate q1 through
qn−2 into a vector of dimensionality 2 ∗ N ∗ (n − 2),
which represents the intermediate configurations in the path.
This ensures that the start and goal configurations remain
unchanged by the optimization. We then perform gradient
descent with backtracking line search using the Armijo con-
dition [13] on this vector with respect to the cost in (3). Note
that we use only first-order gradient information, computed
numerically, as computing higher-order derivatives can be
computationally expensive for concentric tube robots. In
order to compute the cost of the intermediate configurations
vector, the first and last configurations must be added back
into the path. To ensure there is at least one intermediate
configuration, if an initial path has only a start and goal
configuration, a third is added halfway between the two.

We use a cost metric that assigns infinite cost to paths that
collide with the environment, and which encourages paths to
be as far from collision as possible. For this reason, we do
not need to formulate the point cloud into the constraint set,
enabling us to consider a much simpler set of constraints.
This allows us to use a simpler interior point method than
in [29]. At each step of descent, if the configurations violate
the kinematic constraints, they are projected back into the
convex feasible set by clamping the configurations between
their maximum and minimum values defined by the robot’s
tube lengths, ensuring g(σ) ≥ 0 is satisfied. In this way, a
path is locally optimized with respect to the path cost, and
the constraints are enforced at each iteration. This frequently

results in a large improvement in path cost compared to the
pre-optimized path.

D. Keeping Track of the Best Plan Found

The PRM* thread and the optimization threads are work-
ing in parallel to generate better and better plans as time
allows, i.e., until tmax has elapsed, at which time the best
plan found is returned for execution on the robot. However,
even prior to tmax, the best plan found at any given time,
by any of the threads, is maintained. In this way, if for any
reason the algorithm must be stopped early, the best plan
found up until that time can be used.

It is worth noting that the choice of an interior point
optimization strategy augments the ability to stop the method
early and return a high-quality solution. The interior point
optimization is an iterative process, i.e., the optimization is
occurring as a sequence of small steps in the intermediate
configurations’ vector space described above. Unlike many
other constrained optimization methods, interior point meth-
ods have the property that the plan at each of its iterations
is valid and collision-free. This implies that we do not need
to wait for the interior point optimization to complete before
we can leverage the improvements it has found. If PSIMP
must stop in the middle of an optimization, the last iterate
of the optimization is itself a valid plan, and as such can be
used if it is of the lowest cost found by any of the threads
up until that time.

V. RESULTS

We evaluate PSIMP in two ways. First, we compare it to
a pure sampling-based motion planner PRM* by itself, in
three anatomical scenarios, and demonstrate that PSIMP is
able to find motion plans with significantly lower cost in a
fraction of a second, and which continue to improve as time
allows. Second, we demonstrate the method’s ability to adapt
to changes in the anatomy during the surgical procedure.

All results were generated on an 3.40GHz Intel Xeon E5-
1680 CPU with 64GB of RAM, and 4 threads were allocated
for the local optimization thread pool in all experiments.

A. Comparison and Analysis

We evaluate our method in three point cloud scenarios,
two generated from real patient data using the structure from
motion library COLMAP [11], [12] (see Fig. 4) and one
generated from a synthetic skull model (see Fig. 7). The real
patient point cloud scenarios are generated from endoscopic
video of (1) a patient’s upper airway (UA) near the epiglottis,
and (2) a patient’s colon. Note that although the point clouds
used for evaluation are generated via structure from motion,
point clouds generated by other methods or sensors can be
used by the method and the method remains unchanged.

In all three scenarios, 100 random queries are generated
with different collision-free start configurations, and goal
points within the reachable workspace of the robot, for
300 total. To ensure we are evaluating queries that simulate
surgical tasks, we construct goal points near the point cloud
by randomly sampling collision-free configurations that place
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Fig. 4. We evaluate our method using two point clouds generated from real
patient anatomy. Left: The first is generated from an endoscopic video of
the upper airway (UA). Right: The second is generated from an endoscopic
video of a colon. A simulated version of the concentric tube robot is shown
in blue in both point clouds in the bottom row. Both point clouds are
generated from endoscopic video using COLMAP [11], [12]. In addition
to these two point clouds generated from real patient data, we also evaluate
in a point cloud generated from simulated skull base anatomy, which is
shown in Fig. 7.

the tip of the robot within 3 mm of the point cloud, and set
the goal point to be the robot’s tip position in that configu-
ration. The configuration that generated the goal point is not
recorded, only the R3 goal point and we do not ensure that
a valid motion plan exists between the randomly generated
start configuration and the tip position prior to evaluating
the methods. We evaluate PSIMP’s ability to compute high-
quality paths over time, and compare the cost of the best
computed paths to those generated by a PRM* algorithm
without our interior point optimization added. The motion
planners were able to successfully plan motions in 98 queries
in the UA scenario, 99 queries in the colon scenario, and 98
queries in the skull base scenario. The results presented here
are averaged over the successful queries for each scenario.

First, we demonstrate how the quality of the paths improve
as computation time increases. In Fig. 5, we compare the cost
of the best plan found by PSIMP and PRM* up until a given
time, with the cost of the best path found after 100 seconds.
Because the queries have different start configurations and
goal points, the costs between the queries in each scenario
can vary greatly making them difficult to compare directly.
As such, for each query we compute the ratio of cost at a
given time over the best cost found after 100 seconds, and
plot the average over all the queries. In Fig. 5 we show the
ratios as they improve over time. We present the time axis in
log scale to provide more detail at earlier times. On average
the best plans found by PSIMP start improving upon those
found by PRM* after ≈ 0.1 seconds, and are 10% − 30%
better by ≈ 0.5 seconds, depending on the scenario. Prior
to ≈ 0.1 seconds, the methods are comparable as the first
plan found by both methods will be identical, and the first
optimization of PSIMP has yet to occur.

In Fig. 6, we compare the costs of the plans found by the
methods directly to each other, plotting the ratio of the cost
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Fig. 5. We evaluate the performance of PSIMP (blue) and PRM* (red)
over time for all three scenarios, UA (solid lines), colon (dashed lines), and
skull base (dotted lines). Shown here is the ratio of the cost of the best plan
found by each method up to a given time divided by the cost of the best
plan found at any time, by either method, shown for 100 total seconds of
computation. At any time after ≈ 0.25 seconds, the cost of the best plan
found by PSIMP is significantly lower than that of PRM*. The results are
averaged over 99 different queries for the colon scenario, and 98 different
queries for the UA and skull base scenario. Note that the time axis is plotted
on a log scale to show more detail at earlier times.
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Fig. 6. We compare the two methods directly. Here we show the cost of
the best plan found by PRM* divided by the cost of the best plan found by
PSIMP over time. At any time after ≈ 0.5 seconds, PSIMP has found a plan
that is 10-30 percent lower in cost than the best plan found by PRM*. The
results are averaged over 99 queries for the colon scenario and 98 queries
for the UA and skull base scenario. Note that the time axis is plotted on a
log scale to show more detail at earlier times.

of the best plan found by PRM* divided by the cost of the
best plan found by PSIMP, for any point in time. Similar to
the previous results, this shows that PSIMP has found, on
average, a plan that is between 10 and 40 percent better than
that found by PRM* at any point in time after ≈ 0.5 seconds,
with improvements beginning around ≈ 0.1 seconds. Prior to
that time, the two methods produce very similar results due to
the reasons described above. This demonstrates the efficacy
of the local optimization performed by PSIMP to improve
the quality of solutions found at very short timescales.

In order to be effective in a surgical setting, the motion
planner used must produce a valid path quickly. This is the
case for PSIMP. The first path is found by PSIMP in a
fraction of a second, with a median value of 0.12 seconds.
This is the time required by the sampling-based thread in
PSIMP to find its first solution. Furthermore, our results
demonstrate that if you are willing to allow a small amount
of extra computation, PSIMP will significantly improve the
plan via local optimization, making it safer to execute. For
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Fig. 7. PSIMP plans collision-free motions for a concentric tube robot in anatomy represented using a point cloud, and it can quickly replan motions
based on a new point cloud when the anatomy changes. (A) An anatomical model of the skull base from which we derive the initial point cloud. (B)
The point cloud derived from the model using a virtual camera moving through the sinuses and skull base. (C) Motions are planned for the robot (blue)
deep into the sinuses using our method. (D) In the model, an obstruction exists in the sinuses. The point cloud reflects the obstruction with points on its
surface (in the purple window). We plan a motion for the robot to a point at the obstruction. (E) A closer view of the obstruction. (F) The obstruction
is removed from the anatomy, and we generate a new point cloud which reflects the new opening (in the purple window). (G) Our method generates a
motion plan for the robot to move through the new opening in the point cloud to a point behind the opening. (H,I) Two views of the anatomical model
that has the obstruction removed, with the robot passing through the obstruction. (J) The anatomical model rendered semi-transparent for visualization of
the final configuration. Our method was able to find a collision-free solution both to the obstruction and beyond.

instance, given 0.15 seconds longer of computation time,
PSIMP improves the cost of the best plan found by 13.2% on
average across all queries in all scenarios. Further, as more
time is allowed to plan, the quality will continue to improve,
allowing for safer motion plans.

B. Adapting to Changing Anatomy
To demonstrate our method adapting to changing anatomy,

we use a point cloud constructed from an anatomically
inspired model of the human skull base and nasal passage-
ways. For visualization of the entire process, see Fig. 7. We
generate the point cloud from the model by moving a virtual
camera through the nasal passageways, and recording the
points on the surface of the model visible to the camera.
These points are then concatenated into a point cloud.

We consider an example surgical scenario in the skull base,
wherein the robot must move through the sinuses, remove
an obstruction in the sinus passageways on the patient’s left
side, and then move deeper into the skull base to continue
the procedure. The point cloud anatomical model initially
reflects this blockage by containing points on the surface of
the blockage, and not containing points behind it (due to
occlusion caused by the blockage). We first plan a motion
for the concentric tube robot that brings the tip of the robot
up to the blockage. Next we remove the blockage from the
model, as if it were done during the surgical procedure. We
then generate a new point cloud with the blockage removed,
adding points that can be viewed from near the robot’s tip,
as if it were carrying a small chip tip camera. This new
cloud is then used as the obstacle representation for the robot,
and a motion is planned for it to proceed beyond where the
blockage was previously.

Planning the second motion through the opening would
not be possible in the case where the obstacle representation

remains static, such as is the case when segmenting obstacles
only from pre-operative imaging. By updating the model,
as we do through updating the point cloud, the obstacle
representation accurately represents the patient’s changed
anatomy and safe motions can be planned with respect to
the changed anatomy.

This is a demonstrative example showing the value of us-
ing an obstacle representation that can be generated quickly
intra-operatively, compared with using pre-operative imaging
to generate the obstacle representation for planning.

VI. CONCLUSION

Planning motions for concentric tube robots in point
clouds allows for adaptation with respect to changing patient
anatomy during the course of a surgical procedure. We
presented PSIMP, a method that effectively and safely plans
motions in point cloud representations of anatomy using
a combination of sampling-based global exploration and
interior point local optimization. We evaluated our method
in three anatomical scenarios, an upper airway scenario and
colon scenario generated from endoscopic video of real pa-
tients, and a skull base scenario with point clouds generated
from simulated images. We evaluated the efficacy of our
method, showing that it succeeds in quickly finding collision-
free motion plans and significantly improves upon the initial
motion plans in fractions of a second. We demonstrated the
ability of PSIMP to react to changing point clouds and to
plan motions based on the updated information.

In future work we plan to consider the impact of uncer-
tainty in the robot’s motion. As such, we plan to evaluate
PSIMP on a physical robot in ex vivo or phantom anatomy
using closed-loop control based on sensed tip position to
follow motion plans computed by PSIMP. We also plan
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to consider accounting for the uncertainty associated with
concentric tube robot mechanical models during the motion
planning process.
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