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ABSTRACT The maximum curvature of a steerable needle in soft tissue is highly sensitive to needle
shaft stiffness, which has motivated use of small diameter needles in the past. However, desired needle
payloads constrain minimum shaft diameters, and shearing along the needle shaft can occur at small
diameters and high curvatures. We provide a new way to adjust needle shaft stiffness (thereby enhancing
maximum curvature, i.e. “steerability”) at diameters selected based on needle payload requirements. We
propose helical dovetail laser patterning to increase needle steerability without reducing shaft diameter.
Experiments in phantoms and ex vivo animal muscle, brain, liver, and inflated lung tissues demonstrate high
steerability in soft tissues. These experiments use needle diameters suitable for various clinical scenarios,
and which have been previously limited by steering challenges without helical dovetail patterning. We show
that steerable needle targeting remains accurate with established controllers and demonstrate interventional
payload delivery (brachytherapy seeds and radiofrequency ablation) through the needle. Helical dovetail
patterning decouples steerability from diameter in needle design. It enables diameter to be selected based
on clinical requirements rather than being carefully tuned to tissue properties. These results pave the way
for new sensors and interventional tools to be integrated into high-curvature steerable needles.

INDEX TERMS Medical Robotics, Steerable Needles, Surgical Robotics, Medical Devices

I. INTRODUCTION
Bevel tip steerable needles can be used to accurately target
desired locations in tissue and travel along curved paths that
are useful for avoiding obstacles [1]–[3]. Steerable needles
have been proposed for interventions in the liver [4], lungs
[5], kidneys [4], prostate [6], and brain [7]. In combination
with motion planning, robotic needle steering enables the
needle to follow curvilinear, collision-free paths to reach
hard-to-access target locations [8]–[10].

Since the advent of bevel tip steerable needles, effort has
been devoted to increasing needle maximum curvature (i.e.

“steerability”) in tissue by changing needle design (see [11]
for a review). Initial research studied the effects of varying
tip geometric parameters and insertion speed [12]. Design
innovations quickly followed, including incorporating larger
tips on smaller shafts and adding a pre-bend or “kink” just
behind the needle tip to increase steerability in phantoms [13]
and cadaver brain [7]. The effects of parameters (including
kinked tip length and angle) on needle performance were
subsequently characterized in liver tissue [14]. A flexure
hinge was incorporated to obtain the beneficial effects of the
kink, but with less tissue damage during axial rotation [15]. A
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FIGURE 1: Laser cut needle design with helical dovetail patterning on the shaft. Geometric parameters of the design include the bevel tip
angle, the hinge offset, the hinge stop angle, the flexure element thickness, the helix offset, and the helical pitch angle.

variable-length flexure was proposed in [16], which requires
a small-diameter stylet shaft. A pull-wire was incorporated to
enable direct control over the flexure angle [17], [18], at the
cost of increased mechanical complexity.

The above discussion of needle design innovations con-
siders only bevel tip steerable needles, where insertion com-
bined with axial shaft rotation is used to steer the needle.
There are a number of other noteworthy steerable needle
designs including (but not limited to) use of a curved stylet
in conjunction with an outer cannula proposed in [19] and
then later adapted with variations in stiffness and insertion
approaches by others [20], [21], a programmable bevel which
eliminates the need for axial rotation [22], and shape memory
alloy actuation [23], among other innovative designs which
are reviewed in [11]. Each of these prior steerable needle
designs has its own unique strengths and weaknesses. Here,
we restrict our attention solely to bevel tip steerable needles
that are controlled using insertion and axial rotation. We
focus on bevel tip steerable needles because they have been
shown to be effective and are mechanically simple, in that
they only require two degrees of freedom to actuate and do
not have active components in the needle itself.

To achieve high steerability for bevel tip steerable needles,
the stiffness of the needle must be tuned relative to the
properties of the tissue into which it is inserted. This is
typically achieved by reducing shaft diameter until the needle
steers well, and hence very small diameter needles have often
been used in the past [13], [16], [24]–[26]. However, there
are drawbacks to reducing shaft diameter in order to enhance
needle steerability. First, as we show in this paper, with too
great a reduction in needle diameter (i.e. to within the ranges
previously suggested for high curvature needles in biological
tissues) it is possible for the needle to shear through tissue
along the shaft (see Fig. 4), potentially causing serious dam-
age to the tissue. Second, the needle has to be adequately
sized to perform a desired intervention such as diagnostic
tissue collection or the delivery of sensors or therapy. While
this can be done in a two-step process with an outer sheath
[4], [5], it is also sometimes desirable to deliver the therapy
directly through the bevel tip steerable needle itself (e.g. to
preclude movement of the sheath within tissue while the

secondary tool is being inserted). While therapy delivery has
been demonstrated in bevel tip steerable needles [14], the
radiofrequency ablation wire used is a special case among
interventional payloads, since its diameter can be adjusted
to suit the needs of the steerable needle (especially if one is
not factoring specific ablation zone size objectives into the
design process). To enable integration of other interventional
tools or therapies (e.g. brachytherapy seeds, other types of
ablators with fixed diameters, etc.) it is desirable to have
independent control of needle diameter and steerability in the
design process.

The purpose of this paper is to propose helical dovetail
laser patterning to achieve this by adjusting needle shaft
stiffness through an approach other than adjusting needle
diameter. The helical dovetail is a pattern, similar to a repeat-
ing series of interlocking puzzle pieces, that winds helically
around the needle shaft (see Fig. 1). It was previously sug-
gested for use in catheters, with the goal of reducing bending
stiffness while maintaining good axial and torsional stiffness
[27]. We apply this pattern to a steerable needle for the first
time in this paper. We incorporate this helical dovetail just
proximal to a flexure hinge of the type proposed in [15], with
design enhancements to prevent unintended flexing in the
wrong direction and angled surfaces that contact one another
at full articulation in the correct direction. To demonstrate
that the helical dovetail enhances steerability, we perform
insertions in artificial tissue phantoms, as well as ex vivo
porcine muscle, lung tissue, bovine liver, and ovine brain.
We experimentally show that needles of the same tube di-
mensions with patterning perform with higher steerability in
every attempted tissue type over needles that don’t have pat-
terning. We also show that this needle is capable of delivering
a variety of interventional therapies including brachytherapy
seeds and thermal ablation probes, which would be too large
to deliver through existing small-diameter, high-curvature
needles.

II. NEEDLE DESIGN
The helical dovetail needle concept we propose is shown
schematically in Fig. 1, and a photograph of a prototype is
shown in Fig. 2. The helical dovetail pattern and hinge are
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FIGURE 2: A photograph of a curved, helically patterned needle.
The insets show the helical patterning and the hinge design under a
microscope.

FIGURE 3: Illustration of the stiffness difference between two
needles of the same size with and without helical patterning. The
two needles are cantilevered and bend under self-weight.

laser cut into the shaft of the needle.
To visually illustrate the helical dovetail pattern’s ability

to modify shaft stiffness, Fig. 3 shows how a helical dovetail
patterned needle bends under its own weight, compared to
the same needle with no patterning. The needles shown are
the same as those used in the experiments in Sections IV, V,
and VI, with parameters for the helical patterning and hinge
as shown in Table 1.

The prototypes in this paper are made from superelastic
Nitinol tubing (Euroflex GmbH) that was laser cut by MDI
LLC. (Medical Device Imagineering, Inc., Somerset, NJ)
using a fiber laser (Rofin Inc.). We incorporate a flexure
hinge in the needles in this paper as proposed in [15].
The motivation for such a hinge is to obtain the enhanced
steerability associated with previous kinked tip designs while
reducing tissue damage during axial rotation. Prior flexure tip
designs have been fabricated either by gluing small Nitinol
wires side-by-side [15], or by cutting a square notch in the
shaft [28], [29]. The flexure design we propose here is laser
cut into the shaft and incorporates two additional beneficial
features. First, for safety purposes, we include a hard stop to
prevent the hinge from bending in the wrong direction (i.e.
toward the bevel, rather than away), which could damage

TABLE 1: Geometric needle parameters for the bevel tip needle
with helical dovetail shaft patterning used in the experiments in this
paper.

Parameter Value
Helical Pitch Angle 10deg
Nominal Laser Kerf 22µm

Helix Offset 15mm
Hinge Offset 10mm
Bevel Angle 15deg

Flexure Element Thickness 0.1mm
Hinge Stop Angle 18deg

prior designs – especially the notched designs. Note that such
bending would not happen under intended use of the needle,
but might accidentally occur as the needle was being handled
prior to insertion in a real-world operating room. Second, a
stop angle for desired hinge bending is defined by two angled
surfaces. These provide a more stable surface contact when
the hinge closes, rather than the point contact seen in prior
designs.

Note that this helical dovetail needle design provides many
parameters for future optimization studies (see Table 1).
In this paper, our purpose is not to suggest that we have
optimized all relevant parameters, but rather to propose the
new design concept and illustrate its value in (1) enhancing
needle steerability at a fixed diameter, and (2) enabling
integration of interventional payloads. But first, we illus-
trate a negative phenomenon that can occur with small-
diameter, high-curvature steerable needles under certain cir-
cumstances, which motivates that smaller is not necessarily
better, regardless of whether an interventional tool is being
integrated or not.

III. ILLUSTRATION OF SHEARING AT SMALL
DIAMETERS
In this section, we demonstrate experimentally that shearing
can occur at small needle shaft diameters and high curvatures.
This example further motivates a shift away from using
shaft diameter for tuning steerable needle properties to tissue
requirements. The shearing effect occurs along the needle
shaft, when the shaft slices through tissue due to lateral forces
imparted to the tissue after the needle’s tip has passed.

To illustrate this, consider a needle with a 0.36 mm OD
and 0.24 mm ID, to which is affixed a larger, kinked tip
made of stainless steel (1.0 mm OD). This needle design
and these dimensions are similar to those previously used in
e.g. [13], [24], among others. We inserted this needle into
10% by weight Knox gelatin (Kraft Foods Global Inc., IL),
which is a commonly used phantom tissue in needle steering
research [24]. The results are shown in the right-hand images
in Fig. 4 (a) and (b), where the sheared cavity is highlighted
with red dye. By increasing the diameter of the needle and
applying the helical dovetail pattern (i.e. using the needle
described by Table 1), we can maintain high curvature in
this particular phantom tissue, while eliminating the shearing
effect, as shown in the left-hand images in the figure.
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TABLE 2: Average radius of curvature (in mm) values for the helically patterned needles with and without a flexure hinge, and the unpatterned
needles with an identical flexure hinge and without a hinge in phantom and ex vivo tissues. All tube dimensions were identical.

Tissue Type Patterned with Hinge Patterned without Hinge Unpatterned with Hinge Unpatterned without Hinge
10% Gelatin 60.1 69.5 1290.9 410.6
6.1% Gelatin 71.9 77.2 1209.3 548.4

PVC 41.4 77.1 116.6 366.1
Bovine Liver 35.5 54.8 150.6 1112.7
Porcine Loin 61.0 90.0 171.2 792.0
Ovine Brain 61.8 69.8 342.0 661.7

FIGURE 4: Helically patterned needle inserted in tissue vs. a needle
with a small diameter shaft (0.36 mm OD, 0.24 mm ID) with a large
bent tip. (a) shows the patterned needle (left) and the small shaft
needle (right) inserted in the gelatin. (b) shows the tissue damage
caused by each insertion. Red dye was injected into the path created
by each needle after the needle was removed from the gelatin.

IV. THE EFFECT OF PATTERNING ON NEEDLE
STEERABILITY IN TISSUE
We performed a series of needle insertions into various
tissue types to demonstrate that helical dovetail patterning
enhances needle steerability. These experiments demonstrate
that needles of fixed diameters, useful for interventional tool
integration (see Section VI), achieve high steerability with
patterning when they would otherwise not steer well in these
tissues. The steerable needles were the same tube dimensions
as those mentioned in previous sections, with geometric pa-
rameters of the helical patterning and flexure hinge described
in Table 1. We compared four different needles: helically
patterned with a hinge, helically patterned without a hinge,
no patterning with a hinge, and no patterning or hinge. All
needle designs had a beveled tip. We performed insertions
using a steerable needle robot [30], and integrated a 6-DOF
magnetic tracking coil (Northern Digital Inc., Canada) into

the tip of the needle, which was used to measure radius of
curvature. We integrated the sensor distal to the flexure hinge
(where a hinge exists) to position it as close to the needle tip
as possible.

To evaluate the needle curvature in tissues of varying stiff-
ness, we used 3 different phantom materials and 3 different
ex vivo animal tissues. For phantom tissues, we used 10% by
weight Knox Gelatin (used as a phantom tissue in [15]), 6.1%
by weight Knox Gelatin (used as a stand-in for brain tissue in
[13], [31]), and polyvinyl chloride (PVC) mixed at an 80%
plastic/20% softener ratio (used as a stand-in for prostate
tissue in [2], [32], [33]). We also evaluated steerability in
three ex vivo animal tissues: porcine loin (used, for example,
in [15]), bovine liver (used, for example in [25]), and ovine
brain. For each tissue type, we performed five insertions and
measured the radius of curvature. The results are shown in
Table 2. These insertions were conducted at a velocity of
5 mm/s to an insertion depth of 75 mm for all samples except
the ovine brain, where we inserted to 50 mm due to the small
size of the organ.

Despite the wide range of tissue stiffness in these exper-
iments, the helically patterned needles consistently demon-
strated higher steerability (i.e. lower radius of curvature)
compared to needles without the helical patterning. However,
the point here is not to build the highest curvature needles
ever produced, but rather that these curvatures were achieved
in prototypes with diameters that otherwise would not steer
well in these tissues, as shown in the two columns marked
"unpatterned" in Table 2. The table shows the results of in-
sertions of needles that are identical in other ways (diameter,
hinge parameters, etc.), where the only difference is the pres-
ence or absence of helical dovetail patterning and a hinge.
Note that the needles exhibited very low steerability without
the helical dovetail patterning. The helically patterned needle
with a hinge outperforms all the other designs, although even
without a hinge we see an improvement in curvature over
the needles without patterning. These results demonstrate the
ability to substantially improve the steerability of a needle of
fixed diameter.

V. CLOSED-LOOP CONTROL IN INFLATED PORCINE
LUNG
In this section, we describe targeting experiments in ex
vivo porcine lung tissue. The purpose is to demonstrate that
the helical dovetail needles can be steered to desired target
locations with an established closed-loop controller [34].
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FIGURE 5: A photograph of the experimental setup for our ex vivo
porcine lung targeting experiments.

We first determined the radius of curvature of the needle
in inflated lung tissue. Due to the many airways and other
obstacles present in lung tissue, we scanned the lung using
the CT scanner shown in Fig. 5 (The Xoran xCAT, Xoran
Technologies, USA), and performed segmentation according
to [35]. We then selected a region where the needle could be
inserted without rotation and with no collisions, and inserted
along this path. Using magnetic tracker measurements col-
lected during insertion, we measured the radius of curvature
in inflated lung as 100 mm. Note that the best prior radius
of curvature result we have achieved in deflated lung tissue
was 255 mm [5], [9]. Inflation reduces lung density, making
needles steer with worse curvature in inflated lung. These
results underscore the value of helical dovetail patterning in
very soft tissues, such as inflated lung.

We performed a set of targeting experiments in ex vivo
porcine lung, as follows. We used the actuation unit described
in [30], integrated with the overall system concept in [5], in
which the needle is delivered through a bronchoscope. After
inflating the lung via an endotracheal tube, we captured a
preoperative CT scan using a portable CT scanner (Xoran
Technologies, USA) and performed lung segmentation as
described in [35]. We then manually selected target points
in the peripheral lung and steered our needle to each. The
experimental setup was as shown in Fig. 5. Final tip error in
magnetic tracker space was as shown in Table 3. The mean
targeting error for all 14 runs was 1.92 mm. The excellent
targeting error is consistent with prior results in the literature
[7], [25], [34]. This illustrates that the helical patterning has
not interfered with closed loop control.

VI. INTEGRATION OF INTERVENTIONAL PAYLOADS
To demonstrate the advantage of decoupling needle stiffness
(and hence steerability) from shaft diameter, we provide two
examples of delivering interventional tools with the heli-
cally patterned steerable needle: brachytherapy and radiofre-
quency (RF) ablation. Brachytherapy seeds are small im-
plants that locally deliver radiation to tumors. Since radiation

TABLE 3: Final targeting error for each of the insertions under
closed-loop control in inflated ex vivo porcine lung tissue.

Trial Number Error Norm (mm)
1 2.8
2 1.8
3 0.6
4 4.2
5 2.4
6 1.5
7 1.5
8 2.0
9 1.2

10 0.9
11 1.5
12 1.3
13 2.5
14 2.8

FIGURE 6: Helically patterned needle steering through Knox
gelatin. We deployed five cylinders the size of brachytherapy seeds
(4.5 mm x 0.8 mm) to different locations.

FIGURE 7: The needle was inserted into chicken breast and an abla-
tion tool (20 gauge wire) was deployed through it. We successfully
locally ablated the tissue around the tool through the needle.

is localized around the seed, accurate placement is vital for
the success of the overall procedure. Furthermore, the seeds
have a pre-defined cylindrical shape with a fixed diameter,
which places constraints on needle diameter. Fig. 6 shows
several needle trajectories in gelatin, in which we delivered
small cylinders representing brachytherapy seeds into phan-
tom tissue. One standard clinical size for brachytherapy seeds
is 0.8 mm in diameter and 4.5 mm long [36]. To replicate
this, we cut segments of this length and diameter from nitinol
wire, and deployed them through our needle.

We also successfully integrated an RF ablation probe into
our steerable needle, as shown in Fig. 7. Here, we used a
2 MHz RF generator (Basco India, Tamilnadu State, India)
with a 20 gauge nitinol wire to thermally ablate chicken
breast. Note that ablation probes exist in a range of sizes (12 -
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24 gauge). Larger probe sizes produce larger ablation zones
[37], which can be desirable based on the clinical application.
Our purpose here was not to optimize the ablation zone, but
simply to demonstrate that a probe with a clinically realistic
diameter can be integrated with our needle and used to deliver
RF energy to tissue. Note that in the future, helical dovetail
patterning will enable the ablation zone to be considered in
the design process, rather than having the wire diameter (and
hence ablation zone volume) constrained to be small in order
to optimize needle steerability.

VII. CONCLUSION
This paper describes a new way to decouple needle steer-
ability from needle shaft diameter. This newfound flexibility
expands the options available in the design process, which is
particularly useful when one is interested in integrating inter-
ventional or diagnostic and therapeutic interventions into a
steerable needle. We showed that helical dovetail patterning
can make needles that would otherwise steer minimally in
a given soft tissue steer with high curvature. We proved that
this is true in a variety of phantoms and ex vivo tissues, and is
particularly useful in lung tissue, demonstrating much higher
steerability in inflated lung tissue than has ever previously
been demonstrated – even in deflated lung. We also showed
that helical dovetail patterning does not interfere with ac-
curate robotic control and demonstrated steering to desired
targets in inflated ex vivo porcine lung tissue.

In future work, the design parameters of the helical dove-
tail needle can be optimized for specific tissues, diameters,
and/or payloads. Future work will also involve ex vivo and
in vivo experiments in a variety of tissue types with paths
that steer around anatomical obstacles (e.g., blood vessels,
airways, sensitive tissues). The results in this paper serve to
pave the way for interventional tool integration in steerable
needles designed for diverse applications throughout the hu-
man body.
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