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1 Motivation

Steerable needles are a promising technology for delivering targeted therapies in
the body in a minimally invasive fashion via controlled, actively steered inser-
tions. These robotically actuated needles usually leverage an asymmetric tip [1]
to take curved paths through the body, avoiding anatomical obstacles and honing
in on a target (see Fig. 1, left). Methods such as duty cycling and sliding mode
control enable safe, accurate, and automatic controlled steering of these nee-
dles to anatomical targets or along predetermined trajectories in the body [2,3].
These controllers require knowledge of the full 6 degrees of freedom (DOF) pose
of the steerable needle’s tip as it is steered through the body. To acquire this
information for feedback during control, electromagnetic sensors can be embed-
ded in the tip of the needle. However, these sensors typically fill the internal
working channel of the needle, precluding the use of the needle for therapy de-
livery. External sensors, such as ultrasound and bi-plane fluoroscopy (a type of
continuous X-ray) can sense the needle tip’s position and heading (5 DOF), but
are not able to sense its axial orientation (roll angle) [4]. Without full 6-DOF
state measurement, an alternative method is needed to estimate the full state of
the needle tip for effective steering.

Model-based observer methods have been developed to estimate the orien-
tation of the needle during steering [5–8]. These methods work well when the
system behaves similarly to the modeled system they rely on. However, when
unmodeled effects dominate the system dynamics these methods can perform
poorly. For flexible needles, effects such as unpredictable friction forces due to
tissue interactions and long needle lengths create nonlinear torsional dynamics
that are difficult to accurately model [4–6].

By contrast, model-free, data-driven approaches have recently been of great
research interest in state estimation during control in other domains [9]. How-
ever the investigation of such methods has so-far been relatively limited in
needle steering, e.g., to predicting needle deflection behavior for set insertion
depths [10].

In this work, we overcome the limitations present in model-based observers
for needle steering by presenting an estimator that learns the behavior of the
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Fig. 1. Left: Steerable needle inserted into a gelatin tissue simulant. Left Inset: Kine-
matic diagram of the steerable needle model with un-modeled torsional compliance.
This results in rotational lag between the base of the needle and tip of the needle.
Right: Block diagram showing our LSTM-based estimator in the control loop.

needle from a set of training insertions in a tissue phantom. Our method is
capable of accurately estimating the needle’s roll angle during new insertions
and in tissues that are different from those that it trained on.

Using a model-free representation that learns the nonlinear effects from the
training data, we achieve accurate state estimation that abstracts to multiple
types of tissue for a system that is subject to significant modeling errors.

Here, we propose a Long-Short-Term Memory (LSTM)-based recurrent neu-
ral network (RNN) [11] to estimate the needle’s roll angle during steering. Our
LSTM-based network takes as input the sensed, partial state of the needle tip
and recurrently estimates the needle’s unsensed roll angle at each time step.
We use the network to estimate the needle state in a sliding mode controller
and demonstrate highly accurate steering in multiple mediums—including ex
vivo ovine brain and ex vivo porcine inflated lung—significantly outperforming
a traditional Extended Kalman Filter (EKF) estimation method reliant on a
kinematic model that does not account for torsional effects in the system.

The key contributions of this paper are (i) an accurate, model-free, learning-
based method for steerable needle roll angle estimation and (ii) the integration
of the method into sliding mode control for highly accurate steering in multiple
mediums, including ex vivo tissue that the model was not trained on. As such,
our learned method can be trained in advance in gelatin using an internal sensor
which can then be removed from the needle prior to the needle’s use during
clinical deployment in a patient. The needle can then be controlled using external
partial sensing and our learned method. In this way, our learning-based method
overcomes a key limitation in needle steering, namely the requirement for bulky
6-DOF sensors embedded in the needle itself during clinical deployment. This
opens the door for external needle state sensing, enabling accurate tip orientation
estimation (and subsequently safe and accurate needle steering) in a way that
does not interfere with the needle’s ability to deliver therapy to the patient.

2 Technical Approach

We use a kinematic, non-holonomic needle model [1] to define the state of a
bevel-tip steerable needle as it moves through tissue. In this model, the needle’s
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behavior is parameterized by its forward motion, transmitted from actuation
at its base; the plane in which its bevel lies and in which it curves, changed
by rotating the needle at its base; and the curvature of the arc (κ) the needle
takes as it is inserted. The control inputs of this model are u` and uθ, needle
tip insertion velocity and angular velocity, respectively, as shown in Fig. 1, left
inset. Most models assume the needle is infinitely rigid in torsion such that
uα, the angular control velocity applied at the needle’s base, is perfectly and
immediately applied to the needle’s tip. In reality, there is a lag in transmission
of the rotational velocity applied at the actuator to the needle tip, i.e. uα 6= uθ,
an effect that is particularly pronounced for long and/or highly flexible needles.
Our method overcomes this limitation by learning to estimate the tip angle θ so
that the controller can accurately steer the needle.

To do so, we propose a learning-based recurrent neural network with the
following layers: (i) input sequence layer (5 units), (ii) LSTM layer (30 units),
(iii) fully-connected layer (30 units), and (iv) output regression layer (2 units).

Our network takes as input the vector X = [p̂ η̂ sinα cosα]T , where
p̂ = (x̂ ŷ ẑ) is the 3-DOF sensor position, isotropically scaled by a predefined
maximum workspace component (e.g., the needle’s maximum insertion length in
tissue) using min-max feature scaling. The 2-DOF sensor axis measurement of
the needle tip is given by η̂ = (ηx ηy ηz), representing the needle’s heading (i.e.,
its orientation but without the roll angle). The rotational actuator position at
the base of the needle is given by α =

∫
uαdt. The network then outputs the vec-

tor Y = [sin θ̃ cos θ̃]T where θ̃ is the estimated roll angle. We parameterize the
input and output roll angles via sin and cos, as these continuous representations
nicely bound the variables from [−1, 1].

To utilize the network’s estimated rotational angle, θ̃, we integrate the net-
work into a sliding mode controller [2], as shown in Fig. 1, right. θ̃ is then applied
to the needle’s sensed heading η̂ at each time step of the control loop which,
in combination with the sensed position p̂, enables the controller to accurately
steer the needle via the estimated knowledge of the needle tip’s full orientation.

3 Experiments and Results

Data Collection and Network Training: We implemented and evaluated
our learning-based method on a robotic needle steering system previously pre-
sented in [12], designed to perform lung tumor biopsy through a bronchoscope.
The steerable needle used was manufactured out of superelastic Nitinol measur-
ing 1.24 mm OD, 1.0 mm ID, 1.3 m long (EuroFlex GmbH), fabricated using the
method described in [13], and deployed through a clinical bronchoscope (Ambu
USA). To collect the training data for our method, in the form of time series
sequences of paired input and output vectors X and Y , we performed target-
ing insertions using a sliding mode controller [2] with a 6-DOF electromagnetic
(EM) tracker embedded in the needle tip (Aurora NDI, Inc.). We collected a
dataset of 270 insertions in a tissue simulant of 10% gelatin (a tissue phantom
frequently used in the needle steering literature) [14]. Each insertion targeted
a point sampled uniformly at random within the needle’s reachable workspace
defined by a cone with bounding curvature of 200 mm−1, and along an insertion
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Fig. 2. Experimental dataset of 270 insertions in gelatin for network training. Left: The
target points. Right: The trajectories taken to the target points. Data is isotropically
scaled based on zmax, which we choose to be an insertion length of 75 mm.

interval of 40− 75 mm (Fig. 2, left). Every insertion used the controller param-
eters λ1 = 5 mm/sec and λ2 = 2π rad/sec, a 40 Hz controller rate, and achieved
less than 1 mm targeting error (Fig. 2, right).

We then normalized and partitioned the data into two subsets: training (240
insertions) and validation (30 insertions). The network was trained using a root-
mean-squared error loss function on an error defined over all timesteps in all
trajectories in the training dataset. It was trained on an Intel i9-7900X 3.3GHz
10-core CPU with an NVIDIA Quadro P4000 GPU using ADAM optimiza-
tion [15] and dropout regularization [16] to prevent over-fitting. The trained
network achieved a final RMSE of 0.0457 on the validation set.

Online Estimation and Control in Gelatin and Ovine Brain: After
the network was trained, we integrated it into the sliding mode controller to
evaluate the system’s ability to leverage our method to steer accurately to tar-
gets. We performed 30 new insertions in 10% gelatin to evaluate its performance
in the tissue phantom in which it was trained and 10 new insertions in ovine
brain preserved in 4% Formalin (Carolina Biological Supply, Inc.) to evaluate its
performance in biological tissue, a different medium and one in which it was not
trained. The target points in both mediums were sampled uniformly at random
from a similar volume as described in the training sets. At each time step our
method estimated the orientation angle θ, which was combined with the sensed
needle axis and position, forming the full state vector used for sliding mode
control.

For comparison to a state-of-the-art method, we implemented an Extended
Kalman Filter [17], a model-based observer relying on the non-holonomic kine-
matic needle model with no model of the torsional dynamics. The EKF had
knowledge of the same measured 5-DOF position and axis of the sensorized nee-
dle tip and the control input velocities applied at the actuators. The EKF used
the sensed information and kinematic needle model to estimate the state of the
needle throughout the insertion, its estimated state being incorporated into the
same sliding mode controller as our method.

In Fig. 3, we show histograms of the angular error compared with the ground
truth measured by the sensor in the needle’s tip for each time step over all
insertions. The angular error is defined as Ω = arccos ((tr(R)− 1)/2), where R
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Fig. 3. Histograms of angular error over all insertions in gelatin and brain.

Fig. 4. Targeting errors in gelatin and ovine brain. Left: Targeting errors from 10
insertions in gelatin and 5 insertions in brain for our method (green) and the EKF
(blue), with the straight lines depicting the average error for each. Right: An expanded
view of the 0 to 2 mm range of the left figure.

is the difference rotation relating the estimated orientation to the ground truth
orientation. Our method has error values distributed much closer to zero than
the EKF method, indicating superior estimation through each of the insertions.

To demonstrate our method’s ability to control the needle to its intended tar-
get, in Fig. 4 we show targeting errors (the Euclidean distance between the final
needle tip position and the intended target) for each method in each medium.
Our method achieved mean targeting errors of 0.43 mm in gelatin and 0.40 mm in
brain tissue, while the EKF method achieved mean targeting errors of 11.34 mm
in gelatin and 6.12 mm in brain tissue.

Online Steering in Ex Vivo Porcine Lung In addition to evaluating
the estimator performance in gelatin and ovine brain, we performed a sequence
of online steers in statically-inflated ex vivo porcine lung (Animal Technologies,
Inc.). The ex vivo lung was inflated and accessed using an 8.0 mm endotracheal
tube (Smiths Medical ASD, Inc.). We placed custom 3D printed (Formlabs,
Inc.) pre-calibrated fiducials on the lung surface with cyanoacrylate glue and
used them for point-based registration of the EM tracker frame to the CT frame
[18]. A preoperative CT scan was taken using a mobile ENT cone-beam CT
scanner (xCAT Xoran Technologies). We loaded the scan into 3D Slicer [19] and
manually segmented the fiducial points (sphere centers) in the CT frame. We
then manually thresholded the reconstructed CT data (0.4 mm isotropic voxel
size) to yield a segmentation of the lung anatomy, see Fig. 5. We then registered
the segmented anatomy in the CT frame to the EM tracker frame using the EM-
tracked fiducials mounted on the lung. We used this registered segmentation to
inform the piercing sites and the intended target points.
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Fig. 5. Rendered CT Scan Volume of the post-steered needle system using the learned
estimation method. Left: The fiducials are shown in the scan; each contains a 6DOF EM
sensor and is glued to the surface of the lung, and is used for point-based registration
of the CT frame to the EM tracker frame. Right: The same thresholded scan showing
the segmented needle deployed post-steer.

Using a clinical bronchoscope, we navigated down to several airways in the
left lower lobe and pierced through the airway wall in each trial using a piercing
stylet—a 0.9 mm OD superelastic Nitinol tube sharpened to a needle point.
We inserted a nitinol tube, 1.5 mm OD, 1.3 mm ID, over the stylet to hold the
opening in the airway wall. The piercing stylet was removed and exchanged for
the steerable needle.

After loading the needle into the piercing site, we visualized the needle’s
trumpet-shaped reachable workspace with respect to the segmentation to iden-
tify feasible target points for each steer that were collision-free with respect to
blood vessels and other surrounding airways. This target point, specified in the
CT scanner RAS (right, anterior, superior) coordinates, was transformed into
the EM tracker frame using the registration transform acquired from the fidu-
cials. We fed the target point to the sliding mode controller, and the needle was
steered to the target with the estimated roll angle as input to the controller.
A total of 8 trials were executed, with collision-free steers in 2/8, 1 with each
method. We determined the steer was collision-free by inspection of a CT scan of
the post-steered needle, prior to retracting the needle back to its starting pose.
It is important to note that while we attempted to pick target points in the CT
scan that were not visibly in-collision with other parts of the airway and large
vessels, we do not consider obstacle avoidance in this work and the steers were
performed without consideration for obstacles en-route to the target point. As
such, we limit this evaluation to the collision-free trials. In the collision-free trial
of the learned estimator, the steer was accurate, achieving a targeting error of
0.46 mm and 19.0 ◦ average angular error of the estimate, as measured in the
EM tracker frame, not accounting for registration error (see Fig. 6). Conversely,
the EKF performed poorly, consistent with our prior experimental results in the
other tissues, with a target error of 17.6 mm and 156.7 ◦ average angular error. A
rendered CT scan of the post-steered needle is shown for the learned estimator
method trial in Fig. 5, right.
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Fig. 6. Time series of the estimate tracking the needle roll angle θ with angular error
Ω from a steering trial in ex-vivo porcine lung using the learned estimator. The dashed
line shows the mean angular error over the steer.

4 Experimental Insights and Future Work

In this work, we leveraged and validated the performance of a learned estimator
for needle steering, paving the way for other learned methods in this application.

Our results show that a learning method can accurately estimate the roll
angle of a long, flexible steerable needle in the presence of torsional compliance
and unmodeled frictional effects.

Additionally, we show that a network trained on tissue simulant extrapolates
to actual tissue in the form of ex vivo ovine brain and porcine lung. It will be a
subject of future research to investigate the application to other tissues such as
liver and kidney, relevant tissues with applications for steerable needles.

In the ex vivo lung experiments, the learned estimator performed well, though
there were steers which collided with anatomy. This further elucidates the need
for better registration methods, improved segmentation algorithms, and planned
trajectories that consider these obstacles, instead of point targets. Future re-
search will leverage our method when executing trajectories generated via mo-
tion planning in these environments.

Overall, we show that our learning-based method outperforms a model-based
observer whose model does not capture the significant torsional dynamics. We
demonstrate that neural network-based estimation can result in effective tracking
of unsensed state variables, enabling accurate steering to point targets in gelatin,
ovine brain, and porcine lung.
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