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Abstract—Lung cancer is one of the deadliest types of can-
cer, and early diagnosis is crucial for successful treatment.
Definitively diagnosing lung cancer typically requires biopsy,
but current approaches either carry a high procedural risk
for the patient or are incapable of reaching many sites of
clinical interest in the lung. We present a new sampling-based
planning method for a steerable needle lung robot that has
the potential to accurately reach targets in most regions of the
lung. The robot comprises three stages: a transorally deployed
bronchoscope, a sharpened piercing tube (to pierce into the lung
parenchyma from the airways), and a steerable needle able to
navigate to the target. Planning for the sequential deployment
of all three stages under health safety concerns is a challenging
task, as each stage depends on the previous one. We introduce a
new backward planning approach that starts at the target and
advances backwards toward the airways with the goal of finding
a piercing site reachable by the bronchoscope. This new strategy
enables faster performance by iteratively building a single search
tree during the entire computation period, whereas previous
forward approaches have relied on repeating this expensive
tree construction process many times. Additionally, our method
further reduces runtime by employing biased sampling and
sample rejection based on geometric constraints. We evaluate
this approach using simulation-based studies in anatomical lung
models. We demonstrate in comparison with existing techniques
that the new approach (i) is more likely to find a path to a target,
(ii) is more efficient by reaching targets more than 5 times faster
on average, and (iii) arrives at lower-risk paths in shorter time.

Index Terms—Surgical Robotics: Planning; Surgical Robotics:
Steerable Catheters/Needles; Motion and Path Planning

I. INTRODUCTION

LUNG cancer is responsible for the most cancer-related
deaths in the United States [1]. Physicians can identify
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Fig. 1. Our algorithm computes motion plans for a 3-stage steerable needle
lung robot to reach a target (red sphere) in the lung. The robot’s stages include
a bronchoscope (blue), piercing tube (cyan), and steerable needle (green).
Significant obstacles such as blood vessels (red), airways (beige), and the
lung boundary (grey) are extracted from a CT scan. Here, an ex-vivo porcine
lung scan is shown. The sampling-based planner avoids these obstacles and
creates safe robot trajectories planning backwards from the target toward the
airways. Each needle plan has a cost representing the amount of small blood
vessels it crosses, as shown in the close-up. Lower cost is depicted in lighter
shades of green.

suspicious nodules in a patient’s lung using medical imag-
ing, but it is currently not possible to definitively diagnose
those nodules with sufficient accuracy via imaging alone.
While biopsies are the gold standard for diagnosis, existing
approaches are not always sufficient: (i) transoral approaches
(i.e., through the mouth) cannot reach many regions in the lung
as these approaches are restricted to the airways accessible by
a bronchoscope; and (ii) percutaneous approaches that insert
a needle through the chest wall carry high risks such as lung
collapse [2]. As early diagnosis increases a patient’s chance
of survival, a reliable procedure bearing lower risk could be
transformative for lung cancer diagnostics and patient care.

To enable a minimally invasive lung biopsy procedure
that is both effective and safe, we are developing a new
steerable needle lung robot [3]. The robot combines the
advantages of both the transoral and percutaneous approaches
by combining low-risk transoral deployment with the ability
to reach targets in the peripheral lung using a steered needle.
Our robot includes three stages that must be sequentially
deployed during a procedure. First, a physician deploys a
bronchoscope into the patient’s airways. Then, the physician
utilizes a sharpened piercing tube to pierce through the airway
wall and into the lung parenchyma. Subsequently, the system
extends a steerable needle from the piercing tube and into the
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Fig. 2. The complete steerable needle lung robot setup (left) consists of
three stages: a bronchoscope with a flexible tip, a piercing tube that helps
deploy a steerable needle into the lung parenchyma, and a steerable needle
with an asymmetric bevel tip, which semi-automatically steers to a target [3].
The right image shows a close-up of the bronchoscope tip with an extended
piercing tube and a steerable needle.

lung parenchyma, where it automatically steers to the target
location.

In this paper, we introduce a new motion planner for the
steerable needle lung robot that integrates planning for all
three robot stages to enable fast robot deployment to a target
location. In this process, it is crucial to minimize patient risk.
Therefore, the planner has to avoid piercing critical anatomic
structures–such as large blood vessels or airways–which could
lead to severe complications. Fig. 1 shows planned trajectories
in lung anatomy extracted from a preoperative 3D CT scan.
Motion planning for the steerable needle lung robot requires
creating plans for each of the three stages, where each
stage’s start pose depends on the previous stage’s end pose.
When computing plans, prior planning algorithms considered
the stages in the order of their deployment. Based on the
observation that planning from a point (the target) to a region
(the bronchial tubes) is faster than planning from a region to
a point, our new planner considers the stages in reverse order
to achieve significant computation time reduction.

Specifically, prior work [4] used a forward planning ap-
proach that first randomly samples a bronchoscope and pierc-
ing tube pose. From the sampled piercing tube’s tip pose the
needle planner then starts to iteratively build a search tree
toward the target. In case no plan is found from this randomly
sampled start pose, the pose is rejected and the full process is
repeated. This includes repeated construction of new needle
search trees, which is very computationally expensive.

In this work, we propose the inversion of the problem by
constructing a needle search tree from the target location and
by integrating planning for all three stages into one search
tree. Once this tree approaches a region near the airways,
the algorithm attempts to locate a straight piercing trajectory
that leads into the center of an airway reachable by the
bronchoscope. If no successful piercing pose is found, the
search tree is grown further, extending existing paths until
the planner is successful. This is much more efficient than
restarting the entire planning process and relinquishing all
previous exploration. This process relies on pre-computing
a model of regions reachable by the bronchoscope inside
the airway structure. Furthermore, we introduce two speedup
strategies for the planner: one is based on combined geometric

constraints of all three robot stages, and the other biases search
tree growth toward target regions.

We evaluate our new motion planner for a three-stage robot
in simulation using hardware specifications of the robot shown
in Fig. 2. We use anatomy from ex-vivo and in-vivo porcine
lungs, which provide a good model for human lungs [5]. On
average, our approach finds a plan to a random target more
than five times faster than prior work.

II. RELATED WORK

Chest CT scans are the standard for lung cancer imaging
[6]. To plan safe deployment of our steerable needle lung
robot, we require an accurate geometric representation of
the planning environment, which we obtain by segmenting
a patient-specific CT scan. A large number of algorithms
for segmentation of different lung structures are available as
summarized by Van Rikxoort et al. [7]. The segmentation
approach used in this work is described in [8].

Graph and tree data structures are common ways for de-
scribing airway branching structures [9]. Applications that use
such tree representations include motion planning for bron-
choscopies [10], branch point matching for lung registration
[11], and trachial stenosis diagnostics through imaging [12].
Popular methods for extracting such a tree structure are thin-
ning or skeletonization algorithms. We apply the parallelized
thinning algorithm by Lee et al. [13] in an implementation as
developed by Homann et al. [14] to our airway segmentation.
Skeleton representations can be parsed voxel by voxel to
extract a directed graph representation [15]. The links in
such a graph are often modeled as cylinders representing the
varying radii of airway branches [16], [17], [18]. We use such
a representation to model the region in the airways that can
be reached by the bronchoscope.

Robotic steerable needles are a promising approach for
minimally invasive procedures to operate in parts of the body
not safely reachable with conventional instruments [19]. Bevel
tip steerable needles apply asymmetric force on tissue when
they are inserted, which causes them to curve in the direction
of the bevel [20]. By axially rotating the needle during
insertion, different curving directions can be achieved. Using
duty cycling with axial rotation results in varying insertion
curvatures [21].

Different motion planning approaches for steerable nee-
dles have been previously introduced, including fractal-based
planning [22] and optimization methods [23]. Sampling-based
motion planning is another planning approach that has been
proven to be effective in many different high-dimensional
applications [24]. The Rapidly-exploring Random Tree algo-
rithm (RRT) [25] provides an efficient way to plan a path
from a start to a specific target by constructing a search
tree structure. One source of difficulty in sampling-based
motion planning for steerable needles is the needle’s non-
holonomic constraints (i.e., its minimum radius of curvature).
Connecting two samples in SE(3) under these constraints
requires solving a difficult two-point boundary value problem
[26]. Many sampling-based algorithms such as RRT* [27] that
require connecting two arbitrary configurations can therefore
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not be directly applied to needle planning. One solution to
this problem is to first find a plan and then smooth it such
that it complies with the constraints [28]. Our work builds on
a sampling-based method by Patil et al. [29], which creates
a search tree fully compliant with non-holonomic constraints.
This needle planner was extended to a 3-stage motion plan-
ner for robot lung procedures by Kuntz et al. [4]. To our
knowledge, this is the only existing work integrating a needle
planner into a multi-stage planning process. In addition, needle
planning methods exist that explicitly consider deformations
[30], [31] or consider uncertainty [32], [33]. Berenson et
al. [34] present an RRT approach for planning toward a goal
region instead of a single target which is based on inverse
kinematics and bidirectional planning from the goal region
and the start location simultaneously. This method is not
directly applicable to our planning problem as our goal regions
are large and a bidirectional search would therefore be very
inefficient. Nevertheless, it inspired our strategy for target
region biasing, which encourages RRT growth toward the
airways and results in a significant speedup.

III. PROBLEM DEFINITION

Each of the three robotic system stages has physical con-
straints that need to be considered in the planning process.
We visualize these constant hardware limitations in Fig. 3.
A bronchoscope has a diameter dbronch that determines how
far it can be extended into the airways. A piercing tube is
represented by a maximum insertion length ltube beyond the
bronchoscope tip, a diameter dtube, and a maximum piercing
angle θtube that signifies how much the piercing tube’s di-
rection can deviate from the bronchoscope tip’s medial axis.
A steerable needle’s hardware parameters are defined by its
minimum steering radius of curvature rcurve, cross-sectional
diameter dneedle, and maximum insertion length lneedle.

The planning algorithm produces a deployment path ρ to
the target location ptarget based on the consecutive system
stages: ρ = [ρbronch, ρtube, ρneedle]. We define a path of stage
s as ρs = [Qs,1, . . . ,Qs,I ], an ordered list of I ∈ N
configurations. The bronchoscope, piercing tube, and needle
paths consist of L,M,N ∈ N configurations, respectively.
Configurations are described by poses, denoted as 4 × 4
homogeneous transformation matrices

Qs,i =

(
Rs,i ps,i
0 1

)
,

where ps,i ∈ R3 is the position and Rs,i ∈ SO(3) is the
orientation relative to a world coordinate frame.

The first piercing tube position ptube,1 is equal to the final
bronchoscope position pbronch,L and deviates from the bron-
choscope tip’s orientation by up to θtube degrees. Qtube,pierce
denotes the pose in which the piercing tube pierces out of the
airways, and the last piercing tube pose Qtube,M is equal to the
first needle pose Qneedle,1. The needle plan ends at the target:
pneedle,N = ptarget.

Each point along a plan has an associated cost C : R3 →
[0,∞). The cost for a plan ρ is defined as

C(ρ) =

∫ 1

0

C(p(s))ds

Fig. 3. Bronchoscope (blue), piercing tube (cyan) and steerable needle (green)
deployment are limited by the hardware constraints visualized. The piercing
tube pierces out of the airways (beige) and into the parenchyma, where the
steerable needle is deployed.

where s ∈ [0, 1] and p : [0, 1] → R3 is a mapping of
configurations along ρ into 3D space. A plan is only valid
if its total cost is C(ρ) < ∞, which signifies that it pierces
no critical anatomical structures.

Finding an optimal motion plan in this setting can be
expressed as an optimization problem:

ρ∗ = argmin
ρ

C(ρ)

Subject to:
C(p) <∞ ∀p ∈ [ptube,pierce, . . . ,ptube,M ] ∪ ρneedle

gbronch(ρbronch) ≥ 0

gtube(ρtube) ≥ 0

gneedle(ρneedle) ≥ 0

pbronch,L = ptube,1

Qtube,M = Qneedle,1

pneedle,N = ptarget

where ρ∗ is an optimal plan. The general inequalities
gbronch(ρbronch), gtube(ρtube), and gneedle(ρneedle) represent the
stages’ kinematic constraints, in particular the bronchoscope’s
ability to reach areas in the airways limited by its diameter, the
maximum piercing angle, and the needle’s minimum radius of
curvature.

IV. METHODS

Planning a safe robot path toward a target includes sam-
pling configurations for the bronchoscope, piercing tube, and
steerable needle while avoiding critical obstacles and aiming
to find the lowest cost plan. When planning backwards from
the target, the planner attempts to find a path to the reachable
bronchoscope region. Moreover, the planner has to consider
hardware constraints such as a limitation for piercing angles
and the steerable needle’s minimum radius of curvature. In
the following, we will describe each element of the planning
process in detail.

A. Anatomical Environment Representation
To ensure a safe procedure, collisions with critical structures

need to be avoided. Using the method in [8], we create a cost
map IC where each voxel is assigned a cost value:

C(p) =

{
∞ if voxel p ∈ IA ∪ IB ∪ IR
[0, 1] otherwise
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(a) Airway segmentation. (b) Cylinder model.

Fig. 4. The medial axis representation (black) of the airways (beige) is used
to determine which branches the bronchoscope can reach (light green). The
reachable bronchoscope region B (yellow) and the piercing region P (dark
green) are constructed from cylinders.

where IA, IB , and IR are sets of voxels representing the
airway, large blood vessels and the region outside the lung, re-
spectively. Collisions with smaller blood vessels are common
during clinical procedures, but they should still be avoided
when possible. We choose a cost metric that reduces the
risk of piercing vessels during robot deployment. To compute
this cost, we extract smaller blood vessels IV , which are
assigned values [0, 1] in IC . Higher values indicate a higher
risk of piercing through small vessels at each voxel [8]. Our
framework also supports other cost metrics to evaluate the path
quality such as clearance from obstacles and path length. We
determine all locations inside the airways that are reachable
by the bronchoscope tip. We model this region by first
extracting the airways’ medial axes by applying a 3D thinning
algorithm [13] to binary image IA. A resulting skeleton binary
representation is shown in Fig. 4a. This representation is
parsed to extract a directed tree representation. We construct
such a tree T (n, e), where each branch point in the skeleton
is a node n and each branch is an edge e. We parse all voxels
in the skeleton image starting from a manually selected voxel
in the trachea. Bronchoscope deployment is limited by its di-
ameter in comparison to the diameter of corresponding airway
branches. To determine bronchoscope reachability, we create
a simplified airway model by approximating each branch by a
cylinder. For each edge e in the tree structure we connect the
start and end node locations to form a cylinder’s medial axis
and iteratively test positions along this axis for radii inside
the airway. For each position we determine the largest circle
around it in the plane perpendicular to the medial axis that is
fully contained inside the airways. To avoid overestimation of
the airway diameter, the smallest radius found along the axis
is chosen to be the representing cylinder’s radius.

Positions in the airway that can be reached by the bron-
choscope are determined in a recursive way utilizing tree T .
Starting in root node n1 located in the trachea, we conduct
a depth-first search following each edge until its associated
diameter becomes smaller than the bronchoscope’s diameter.
The result of this search is a set of cylinders B = {b1, . . . , bn}
that represents all reachable airway branches. A cylinder
b ∈ B representing the reachable part of edge e is defined
as b = {pb,p′b,vb, lb, rb}. The start position pb ∈ R3 is
equivalent to the coordinates of ni, the node the edge starts
from. The end position p′b ∈ R3 is the last reachable position
along e. The cylinder’s direction vb ∈ R3 is defined as
the vector connecting the edge’s start node and end node
vb = nj − ni. The cylinder’s length is lb = ||p′b − pb||2. The

Algorithm 1 Backward Planning
1: function BACKWARDPLANNING(ptarget, IC , P , B)
2: RRT ←initialize(ptarget)
3: while not RRT .planFound() do
4: Q← sampleConfig(RRT , IC , B)
5: if not collision(Q) and geometricConstr(Q, B) then
6: RRT .add(Q)
7: if Q in P then
8: Qtube ← Q.extend()
9: if Qtube in B and gtube(Qtube, B)) then

10: ρ, c ← RRT .savePlan()
return ρ, c

Algorithm 2 Sampling a Configuration
1: function SAMPLECONFIG(RRT , IC , B)
2: r ← random([0, 1])
3: if r < Prstart then
4: Q← sampleFullConfiguration()
5: RRT .addNewTargetOrientation(Q)
6: else if r > 1− Prbias then
7: p← sampleFromCylinders(B)
8: Q← RRT .steerTo(p)
9: else

10: p← sample(R3)
11: Q← RRT .steerTo(p)

return Q

radius rb is the smallest radius determined along the reachable
part of e subtracted by 0.5dbronch to represent regions inside
the branch that the center of the bronchoscope tip can reach.
In addition, we define the piercing region P as a cylinder set
representing the region the piercing tube tip can reach. Here,
we extend the length of each cylinder in B by the piercing
tube’s maximum length ltube and the radius of each cylinder
by ltube sin(θtube) to define an outer boundary of all points
the piercing tube can reach if extended to its maximum. The
cylinder sets are visualized in Fig. 4b. It is highly discouraged
to puncture the pleura between lung lobes due to potential lung
collapse. Therefore, we always restrict the planning process
to the lobe the target is located in.

B. Backward Planning

We reverse the planning problem and plan backwards from
the target position ptarget toward the airways where the plan
has to fulfill a set of constraints to accurately represent the
process of piercing the airway wall. To create such a plan,
we apply an RRT algorithm that constructs a search tree
consisting of robot configurations. Our method is outlined in
Algorithms 1 and 2. Black code is part of the basic algorithm
described in this subsection, whereas blue and pink lines refer
to speedup additions described in the next subsection. The
algorithm takes into account the non-holonomic constraints
of the needle represented in gbronch, gtube, and gneedle.

Our method for growing the RRT is based on the approach
described in [26]. Starting from ptargets our algorithm extends
the RRT by sampling new needle tip configurations (Alg. 1,
line 4). It first samples only a position p ∈ R3 (Alg. 2, line
10). Then, it determines its nearest neighbor N in the existing
RRT using a custom distance function that only considers tree
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nodes whose orientation allows for reaching the new sample
under the needle’s curvature constraint. It connects the nearest
neighbor and the sample by an arc with a constant radius
of curvature. The algorithm takes a step of length s from
neighbor N toward p along the arc, which results in the new
configuration Q (Alg. 2, line 11). The connecting process
determines the full configuration of Q as the arc connection
provides its orientation.

For efficient collision detection we add all center points of
voxels with IC(p) = ∞ representing critical obstacles to a
nearest neighbor search structure NN . A position p along a
needle path is considered in collision if the distance to its
nearest neighbor obstacle voxel NN(p) = v is smaller than
or equal to the radius of a sphere enveloping the voxel:

Collision(p) = ||p− v||2 ≤ rvoxel

rvoxel =
√
x2 + y2 + z2 +

dneedle

2
,

(1)

where (x× y× z) is the voxel size. Only configurations with
a collision-free connection to their nearest neighbor are added
to the RRT (Alg. 1, line 6).

The orientation of the first node in the search tree ptarget is
not known a priori because the target can be reached from any
direction. To solve this problem, we add a subroutine (Alg. 2,
line 3) that randomly samples a needle tip configuration,
including its orientation. The algorithm then determines a
constant curvature arc connection from the configuration to
ptarget. This process determines the target’s orientation. Addi-
tionally, this subroutine is called with a probability of Prstart
throughout the planning process. This results in growing
multiple intertwined search trees from the target location at
the same time.

If a sample located inside the piercing region P is added
to the needle search tree, this sample is considered to be the
first element Qneedle,1 of needle path candidate ρneedle, and we
attempt to find a connection to the reachable bronchoscope
region B. Piercing tube deployment is limited by constraints
represented in gtube: the straight tube is only able to move
in the direction of its medial axis up to a maximum length
ltube. It is deployed from the bronchoscope, deviating from the
bronchoscope tip’s orientation by an angle of at most θtube.
To determine a candidate piercing tube path ρtube, we sample
tube tip configurations along a straight line segment starting at
Qtube,M = Qneedle,1 with a step size z. We add configurations
to the path until it either reaches a cylinder in B or it surpasses
the maximum length ltube (Alg. 1, line 8). Each sampled point
is checked for collisions with blood vessels in IB , in which
case the sample is rejected. If a sampled point is in collision
with IA, the piercing tube path has reached the airways. It
cannot leave the airways again to avoid additional piercing of
the airway walls. If the line segment reaches B, we consider
this pose as the piercing tube’s start pose Qtube,1 of path ρtube.
We compare its direction vtube to the direction of the colliding
cylinder bi:

cos θ =
−vtube · vbi
||vtube|| · ||vbi||

,

where θ is the approximate angle at which the airway walls
are pierced. This angle has to be smaller than the maximum

Fig. 5. If a new sample added to the RRT is located inside the piercing region
P (grey), it is considered the start pose of a candidate needle path ρneedle
(dark green). The sample is extended to a piercing tube path ρtube (cyan).
If this path pierces into the airways (beige) and reaches the bronchoscope
region B (yellow) with a piercing angle θ < θtube, a bronchoscope plan
ρbronch (blue) is constructed. In this case, a full three-stage plan was found.

achievable piercing angle θtube. If this condition is met, a full
three-stage plan was found, as the bronchoscope can reach
all positions in B. We construct a bronchoscope path where
pbronch,L = ptube,1 is the desired bronchoscope tip position.
From this position we utilize tree T to backtrace edges
to the trachea resulting in a bronchoscope deployment path
ρbronch. As T represents all poses the bronchoscope can reach,
ρbronch fulfills the bronchoscope kinematic constraints gbronch.
The path construction and evaluation process is visualized in
Fig. 5. If the piercing tube path does not reach region B or θ
is larger than θtube, the algorithm resumes extending the RRT
until it finds the next candidate piercing tube pose Qtube, M.
The same RRT structure is extended until a valid path reaching
B is found (Alg. 1, line 10).

If a 3-stage plan ρ is found, it is recorded alongside its
cost. After the algorithm found a plan, it restarts the planning
process including construction of a new RRT. We run the
planner in an anytime manner, i.e., over time, it finds plans
with lower cost as computation time permits.

C. Speeding up Backward Planning

As it has been shown that a goal bias speeds up planning
toward a target [35], we add a subroutine that samples
positions inside the reachable bronchoscope region B. The
function sampleFromCylinders:{ci} → R3, where {ci} is a
set of cylinders, uniformly samples a position p ∈ R3 from the
volume of the bronchoscope reachable region B (see Alg. 7
line 6). The new sample is then added to the search tree.
This subroutine is performed periodically instead of standard
sampling with a probability of Prbias, causing the search tree
to expand toward the reachable airways (Alg. 2 line 6 in blue).

Furthermore, we restrict new samples in the search tree
by geometric constraints, adding only those samples to the
RRT that potentially lead to a solution. We represent each
cylinder in B by spheres of the same radius. The spheres’
centers are aligned with the cylinder’s medial axis, and they
are spaced rvoxel apart, as defined in Equation 1. To validate
a sample we first test its backward reachability toward B. A
sample’s reachable workspace is defined by its orientation and
the needle’s minimum radius of curvature rcurve, resulting in
a funnel shape as shown in Fig. 6a. Only spheres within this
workspace can be reached from the sample.
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(a) Backward reachabil-
ity constraint.

(b) Angle constraint. (c) Distance con-
straint.

Fig. 6. At least one bronchoscope reachable sphere (blue) has to fulfill all
3 constraints visualized in (a)-(c) with respect to the current sample p (red).
Otherwise, the sample does not contribute to finding a plan and is rejected.

In addition, piercing tube deployment is limited to an
angular range defined by the maximum piercing angle θtube.
We define a second funnel shape representing the workspace
of a particular sphere shown in Fig. 6b. This funnel’s base is
defined as a circular cross-section of the sphere. The base is
normal to the medial axis of the cylinder it is representing.
The funnel extends from the base with an angle of θtube and
follows curvature rcurve. The sample can only be reached from
a sphere if it is located within its workspace.

Furthermore, we test if the sample is within reach from any
of the spheres, as depicted in Fig. 6c. We compare its distance
from a sphere s and its distance to the target with the needle’s
and piercing tube’s maximum insertion length:

lneedle + ltube ≤ ‖p− ps‖2 +DistRRT(p)− rs,

where ps is the sphere’s center position, rs is its radius, and
DistRRT(·) is a function providing the distance from p to
ptarget following the edges of the search tree.

This subroutine is applied to each new sample before it
is added to the RRT (Alg. 1 line 5 in pink). For each new
sample at least one sphere has to be found for which all three
geometric constraints–the backward reachability constraint,
the angular constraint, and the length constraint–are valid. All
other samples are discarded.

V. EVALUATION

We evaluated our algorithm based on CT scans of porcine
lungs, which closely match the anatomy of human lungs [5]
and will be used in pre-human trials of the steerable needle
lung robot. We acquired CT scans of porcine lungs using
a Siemens Biograph mCT scanner (Siemens Healthineers,
Erlangen, Germany). Scans were reconstructed with a voxel
size of (0.6× 0.6× 1.0) applying a pulmonary B70F kernel.
We used scans of two inflated ex-vivo porcine lungs and one
in-vivo porcine lung with 150 randomly selected targets in
each. In the two ex-vivo lungs we sampled targets in 5 lobes
(right caudal, left caudal, middle, accessory, and left cranial
lobes) that correspond to the 5 lobes in a human lung [5]. The
in-vivo lung is significantly smaller (approximate lung volume
1.7 liters) than an adult human lung. Therefore, only the two
caudal lobes are reachable with our system and we sampled
targets in these lobes only. The in-vivo scan was taken during
a single breath hold.

Fig. 7. We tested our algorithm in three porcine lungs with 150 random target
locations each. Our backward planning algorithm found plans to significantly
more target locations than the forward planning approach in 60 seconds. There
is no target the forward approach found a plan to but the backward approach
did not.

We only selected targets with a safety margin of at least
1 mm in addition to the minimum distance to the closest
obstacle voxel as defined in Equation 1. We assumed the
bronchoscope’s diameter is dbronch = 6mm. The piercing tube
had a diameter of dtube = 2mm and a maximum insertion
length of ltube = 50mm. We chose a maximum piercing angle
of θtube = 45 degrees based on experimental capabilities.
The needle’s diameter was dneedle = 1.0mm with a maximum
insertion length of lneedle = 120mm. A conservative measure
of its minimum radius of curvature is rcurve = 100mm [36],
[3], [37].

We compare our backward planning approach for a 3-
stage robot against prior work, which used a forward planning
method [4]. The prior work forward planner randomly samples
bronchoscope and piercing tube poses that serve as a start pose
for building an RRT for the needle stage. Needle configuration
samples for the RRT are geometrically constrained to the
needle’s reachable workspace. The forward planner employs
goal biasing by adding ptarget to the RRT with probability
Prbias. This is different from our biasing strategy, which
consists of adding random samples from within the reachable
airway region to the search tree. For fair comparison we set
Prbias = 0.1 for both algorithms and we set Prstart = 0.05.

Additionally, we set a timeout t = 3 sec for the needle plan-
ning stage in the forward planner to avoid wasting compute
time if the needle planning problem is infeasible for a specific
combination of start pose and target position. The backward
planner does not require timeouts for any of its subroutines
as it keeps extending the RRT from the target until a solution
is found.

For each target, we ran the planning process 10 times for
a duration of 60 seconds for each algorithm, respectively. All
simulations were run on a 3.2GHz 16-core Intel Xeon E5-2667
CPU with 64GB of RAM. We implemented all motion planner
variants discussed in this paper based on the Motion Planning
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(a) Success rate over time.

(b) Cost progression over time.

Fig. 8. Simulation results for 450 random targets in three lung planning
scenarios. For each target the planner ran for 60 seconds of planning time
and we repeated this process 10 times. (a) shows that all backward planning
variants find plans to more targets faster than the forward planner. (b) shows
that through this speedup the planner finds lower cost plans faster.

Template (MPT) library [38], which provides functionality
for parallelized search tree construction. For efficient collision
detection we used the nigh library [39] for nearest neighbor
search. We evaluated the algorithms with respect to three
different performance metrics: the ability to find a plan to
a variety of targets, computational speed, and path costs.

First, we analyzed planning success for each target location.
A successful planning process finds at least one plan within 60
seconds. The ex-vivo scenarios are simpler planning problems
since blood vessel segmentation is limited as vessels are no
longer filled with blood. Furthermore, the inflated ex-vivo
lungs are significantly larger than the in-vivo lung providing
more space for the needle to curve towards a target. In the two
ex-vivo scenarios our backward algorithm found at least one
plan for 290 out of 300 target location, whereas the forward
planner only found solutions for 234 targets. In the in-vivo
scenario our backward planner found plans for 128 out of
150 targets, while the forward planner only found plans to
61 targets. There is no target the forward algorithm found a
plan for that our backward algorithm did not. Fig. 7 depicts
that most targets for which only the backward algorithm was
successful are located close to the airways. This illustrates a
fundamental disadvantage of the forward planner: finding a
plan to a target close to the airways is highly dependent on
the highly random poses sampled in the first two stages.

Second, we were interested in the duration of the planning
process as it is critical to quickly find a safe plan during
a procedure. We define success rate as the percentage of
targets for which a plan has been found during a single run
evaluated for all 450 targets. We recorded how the success
rate changes throughout the time interval of 60 seconds and
display an average over 10 such runs in Fig. 8a. It is evident
that even the basic backward algorithm is significantly faster

at finding plans than the prior forward approach. In addition,
we see that both the geometric constraints and the biasing
speedup strategies contribute to faster planning. Combining
both strategies resulted in finding plans for 92.53% (±0.37%
standard deviation) of targets in under 60 seconds. The back-
ward approach with speedup takes on average 2.48 seconds
to find the first plan per target, whereas the forward approach
takes 13.90 seconds taking into account only targets with a
plan found at least once by both algorithms.

Third, we were interested in minimizing path cost, which
is equivalent to minimizing the piercing of smaller blood
vessels. Thus, plan cost is a measure of plan safety. During
each planning process, the cost to reach the target is updated
whenever a less expensive plan is found. We computed the
average cost progression across all targets for each of the 10
runs. For each time step we determined all targets for which
at least one plan was found and we computed the average of
their current costs, resulting in the average cost progression
over time for one run. We computed the average and standard
deviation across all 10 runs, as shown in Fig. 8b. For fair
comparison we considered only targets for which all algorithm
variants found at least one plan. Fig. 8b shows the average cost
progression and its standard deviation across all runs. It can be
seen that our backward algorithm found less expensive plans
significantly faster than the forward algorithm and that both
speedup strategies contributed to better results.

VI. CONCLUSION
In this work, we introduce a new planning approach for

a multi-stage steerable needle lung robot designed for lung
interventions. Our approach is based on backward planning,
which allows for more efficiency. In addition, we introduce
two speedup strategies. One strategy is based on imposing
geometric constraints on the search space and the other one
biases tree extension toward regions of interest. We compared
our approach to an existing forward planning method. For
three different anatomical scenarios we demonstrated (i) that
our approach is more likely to find a path to a target; (ii) it
does so faster; and (iii) it produces lower-risk paths in shorter
time. The main advantage of our new backward approach over
the forward approach is that it performs the most complex part
of the planning process - the creation of a needle search tree
- only once instead of repeating it many times.

While our backward planning approach shows promising
results, there are still some features to be optimized. For
instance, to accelerate the process of finding lower cost plans,
locally optimizing existing plans for lower cost is an option
to be explored.

Similar to previous experiments [40], we are planning on
evaluating the algorithm by performing a biopsy procedure
in an ex-vivo porcine lung. Clinical translation introduces
new challenges including but not limited to deformable image
registration of a pre-operative scan to the lung and modeling
tissue motion from breathing and heartbeats. From a planning
perspective, rapid re-planning for some or all of the robot
stages may be required to adjust for uncertainty. We hope
that the increased efficiency of our 3-stage planner will be an
enabler to successful clinical experiments.
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[15] J. Tschirren, K. Palágyi, J. M. Reinhardt, E. A. Hoffman, and M. Sonka,
“Segmentation, skeletonization, and branchpoint matching—a fully au-
tomated quantitative evaluation of human intrathoracic airway trees,”
in Proc. International Conference on Medical Image Computing and
Computer-Assisted Intervention. Springer, 2002, pp. 12–19.

[16] T. Schlathoelter, C. Lorenz, I. C. Carlsen, S. Renisch, and T. Deschamps,
“Simultaneous segmentation and tree reconstruction of the airways for
virtual bronchoscopy,” in Medical Imaging 2002: Image Processing,
vol. 4684. International Society for Optics and Photonics, 2002, pp.
103–113.

[17] H. Kitaoka, R. Takaki, and B. Suki, “A three-dimensional model of the
human airway tree,” Journal of Applied Physiology, vol. 87, no. 6, pp.
2207–2217, 1999.

[18] R. M. Spencer, J. D. Schroeter, and T. B. Martonen, “Computer
simulations of lung airway structures using data-driven surface modeling
techniques,” Computers in Biology and Medicine, vol. 31, no. 6, pp.
499–511, 2001.

[19] N. J. Cowan, K. Goldberg, G. S. Chirikjian, G. Fichtinger, R. Alterovitz,
K. B. Reed, V. Kallem, W. Park, S. Misra, and A. M. Okamura, “Robotic
needle steering: Design, modeling, planning, and image guidance,” in
Surgical Robotics. Springer, 2011, pp. 557–582.

[20] R. J. Webster III, J. S. Kim, N. J. Cowan, G. S. Chirikjian, and
A. M. Okamura, “Nonholonomic modeling of needle steering,” The
International Journal of Robotics Research, vol. 25, no. 5-6, pp. 509–
525, 2006.

[21] D. S. Minhas, J. A. Engh, M. M. Fenske, and C. N. Riviere, “Modeling
of needle steering via duty-cycled spinning,” in Proc. International
Conference of the IEEE Engineering in Medicine and Biology Society.
IEEE, 2007, pp. 2756–2759.

[22] M. Pinzi, S. Galvan, and F. Rodriguez y Baena, “The adaptive hermite
fractal tree (ahft): a novel surgical 3d path planning approach with
curvature and heading constraints,” International Journal of Computer
Assisted Radiology and Surgery, vol. 14, no. 4, pp. 659–670, 2019.

[23] V. Duindam, J. Xu, R. Alterovitz, S. Sastry, and K. Goldberg, “Three-
dimensional motion planning algorithms for steerable needles using
inverse kinematics,” The International Journal of Robotics Research,
vol. 29, no. 7, pp. 789–800, 2010.

[24] S. M. LaValle, Planning algorithms. Cambridge University Press, 2006.
[25] ——, “Rapidly-exploring random trees: A new tool for path planning,”

TR 98-11, Computer Science Dept., Iowa State Univ., 1998.
[26] S. Patil, J. Burgner, R. J. Webster, and R. Alterovitz, “Needle steering

in 3-d via rapid replanning,” IEEE Transactions on Robotics, vol. 30,
no. 4, pp. 853–864, 2014.

[27] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[28] A. Favaro, L. Cerri, S. Galvan, F. Rodriguez y Baena, and E. De Momi,
“Automatic optimized 3d path planner for steerable catheters with
heuristic search and uncertainty tolerance,” in Proc. IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2018, pp.
9–16.

[29] S. Patil and R. Alterovitz, “Interactive motion planning for steerable
needles in 3d environments with obstacles,” in Proc. IEEE RAS & EMBS
International Conference on Biomedical Robotics and Biomechatronics,
2010, pp. 893–899.

[30] R. Alterovitz, K. Goldberg, and A. Okamura, “Planning for steerable
bevel-tip needle insertion through 2d soft tissue with obstacles,” in Proc.
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2005, pp. 1640–1645.

[31] S. Patil, “Motion planning under uncertainty in highly deformable
environments,” Robotics Science and Systems: Online Proceedings,
2011.

[32] W. Park, J. S. Kim, Y. Zhou, N. J. Cowan, A. M. Okamura, and
G. S. Chirikjian, “Diffusion-based motion planning for a nonholonomic
flexible needle model,” in Proc. IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2005, pp. 4600–4605.

[33] R. Alterovitz, M. Branicky, and K. Goldberg, “Motion planning under
uncertainty for image-guided medical needle steering,” The Interna-
tional Journal of Robotics Research, vol. 27, no. 11-12, pp. 1361–1374,
2008.

[34] D. Berenson, S. S. Srinivasa, D. Ferguson, A. Collet, and J. J. Kuffner,
“Manipulation planning with workspace goal regions,” in Proc. IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2009, pp. 618–624.

[35] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,”
The International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, 2001.

[36] P. J. Swaney, A. W. Mahoney, B. I. Hartley, A. A. Remirez, E. Lamers,
R. H. Feins, R. Alterovitz, and R. J. Webster III, “Toward transoral
peripheral lung access: Combining continuum robots and steerable
needles,” Journal of Medical Robotics Research, vol. 2, no. 01, p.
1750001, 2017.

[37] M. Rox, M. Emerson, T. E. Ertop, I. Fried, M. Fu, J. Hoelscher,
A. Kuntz, J. Granna, J. Mitchell, M. Lester, F. Maldonado, E. A.
Gillaspie, J. A. Akulian, R. Alterovitz, and R. J. Webster, “Decoupling
steerability from diameter: Helical dovetail laser patterning for steerable
needles,” IEEE Access, vol. 8, pp. 181 411–181 419, 2020.

[38] J. Ichnowski and R. Alterovitz, “Motion planning templates: A motion
planning framework for robots with low-power CPUs,” in Proc. IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 612–618.

[39] ——, “Concurrent nearest-neighbor searching for parallel sampling-
based motion planning in SO(3), SE(3), and euclidean spaces,” Springer,
2018.

[40] A. Kuntz, P. J. Swaney, A. Mahoney, R. H. Feins, Y. Z. Lee, R. J.
Webster III, and R. Alterovitz, “Toward transoral peripheral lung access:
Steering bronchoscope-deployed needles through porcine lung tissue,”
in Proc. Hamlyn Symposium on Medical Robotics, 2016, pp. 9–10.


