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Abstract— Surgical automation has the potential to enable
increased precision and reduce the per-patient workload of
overburdened human surgeons. An effective automation system
must be able to sense and map subsurface anatomy, such as
tumors, efficiently and accurately. In this work, we present a
method that plans a sequence of sensing actions to map the
3D geometry of subsurface tumors. We leverage a sequential
Bayesian Hilbert map to create a 3D probabilistic occupancy
model that represents the likelihood that any given point in the
anatomy is occupied by a tumor, conditioned on sensor readings.
We iteratively update the map, utilizing Bayesian optimization
to determine sensing poses that explore unsensed regions of
anatomy and exploit the knowledge gained by previous sensing
actions. We demonstrate our method’s efficiency and accuracy
in three anatomical scenarios including a liver tumor scenario
generated from a real patient’s CT scan. The results show
that our proposed method significantly outperforms comparison
methods in terms of efficiency while detecting subsurface
tumors with high accuracy.

I. INTRODUCTION

Surgical automation [1], [2] has the potential to increase
precision and reduce the per-patient workload of surgeons, a
group already stretched thin by a general population that is
rapidly outgrowing surgical resources [3], [4]. An effective
autonomous surgical system must be able to sense, map, and
reason about a patient’s anatomy below the visible surface
of organs.

Consider the case of resecting subsurface tumors in an
organ. It is imperative to have an accurate understanding
of the location and geometry of the tumors in the organ
prior to resection in order to minimize the damage to healthy
tissue while ensuring all cancerous tissue is safely removed
(see Fig. 1). While pre-operative imaging techniques such as
computed tomography (CT) can provide general knowledge
of the anatomy, it may change before or during surgery. This
necessitates the use of intraoperative sensing and mapping
of the tumors, e.g., through the use of an ultrasound probe.
Such sensing should be both accurate and efficient in order
to reduce the overall time required for the surgical procedure.
In this work, we present a method to enable an autonomous
surgical system to accurately and efficiently map subsurface
patient anatomy, such as tumors inside an organ.

Specifically, we present a method that utilizes a probabilis-
tic model of anatomical geometry to iteratively determine
sensing actions that improve the model’s understanding of
the geometry. To do so, we wrap a Bayesian optimization [5]
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Fig. 1: Example tumor localization scenario. (a,b) A liver (black) and 3
tumors (red) segmented from a CT scan in the liver tumor segmentation
(LiTS) dataset. (c,d) A cone-shaped sensing volume (purple) normal to the
liver surface (blue) detects the embedded tumors (yellow).

framework around a probabilistic representation of 3D ge-
ometry, called a Bayesian Hilbert map [6], [7], that utilizes
sensor information to determine the likelihood that any
particular point in the organ is occupied by a tumor. Bayesian
Hilbert maps enable us to iteratively update the occupancy
probability of a given continuous anatomical environment as
we obtain sensor readings. The Bayesian Hilbert map then
serves as a continuous posterior distribution on tumor occu-
pancy at each iteration, enabling the Bayesian optimization
to determine the next sensing action. Our method utilizes
an objective function in the optimization that balances the
exploration of unsensed regions of anatomy while reducing
the uncertainty around regions where tumors have already
been identified. In this way the method is able to accurately
map the geometry of the subsurface tumors in a relatively
few number of sensing steps.

While prior work has focused on sensing and mapping
in 2D [8], [9], our use of Bayesian Hilbert maps enables
reasoning over 3D geometry accurately and efficiently. We
evaluate the performance of our method in multiple surgery-
inspired scenarios, including environments in which tumors
are randomly placed, evaluating generalizability, as well as a
real-life scenario generated via the liver tumor segmentation
(LiTS) dataset [10]. We compare our method to random
sampling and a multi-resolution scan. Results show that
our proposed method outperforms both comparison methods,
significantly reducing the number of sensing actions required
for accurately mapping the embedded tumors.



II. RELATED WORK AND BACKGROUND

A variety of methods have been developed to automate
several tasks in robotic surgery. Jansen et al. [11] developed
an automated method of tissue retraction to grasp deformable
objects using a spring model. Elek et al. [12] automated
blunt dissection of tissue using motion primitives. McKinley
et al. [13] developed an interchangeable surgical tool system
to automate a multi-step tumor resection including palpation,
incision, debridement, and injection. In this paper, we focus
on autonomous sensing for tumor localization.

Automated sensing for tumor localization and segmen-
tation has also been studied via palpation. Garg et al. [8]
presented an algorithm that samples over a stiffness map for
localizing tumor boundaries with a palpation probe. Nichols
et al. [9] automated robotic palpation to localize and segment
hard regions in soft tissues, also for tumor localization. These
methods are specific to palpation, framing the problem in
two dimensions. In this work, we consider a 3D sensor,
such as a swept ultrasound, and model the geometry in a
3D continuous space.

Global optimization can enable autonomous surgical sys-
tems to optimize throughout a given search space by finding
the global extremum of a given function. Bayesian optimiza-
tion [5] is one popular global optimization method and has
been widely used in applications such as object surface esti-
mation [14] and hyper-parameter optimization [15]. Bayesian
optimization has also been used in surgical robotics, for
instance as the optimization method in the above mentioned
palpation work of Garg et al. [8]. Particularly effective in
cases where function evaluation is computationally expen-
sive, Bayesian optimization decides which points in the
search space should be sampled and evaluated next via ac-
quisition functions, such as expected improvement (EI) [16].
In this work, we leverage Bayesian optimization to determine
our sensing poses, choosing an acquisition function that
considers the balance between exploration and exploitation.
Since autonomous surgical systems may have limited or
inaccurate prior information regarding the number and size
of tumors present in a given anatomical environment, it is
necessary to simultaneously explore areas of high uncertainty
as well as exploit existing knowledge of areas where tumors
have already been sensed.

A variety of methods have been used to model a proba-
bilistic distribution over a robot’s environment. For instance,
Gaussian processes [17] have been used with Bayesian
optimization as a standard modeling method. Garg et al. [8],
mentioned above, build a probabilistic model of the tissue
stiffness map using Gaussian processes. There have been
other methods, e.g., [18], which model the probabilistic
occupancy state of an environment using Gaussian Processes.
Senanayake et al. [7] developed Bayesian Hilbert maps to
build an occupancy map in dynamic environments. They
simultaneously introduced an extended version of Bayesian
Hilbert maps, sequential Bayesian Hilbert maps [7], as a fast,
sequential long-term occupancy mapping method in dynamic
environments. In this work, we leverage sequential Bayesian

Fig. 2: Example of the sensor pose at iteration t. The sensing pose st is
composed of position pt (yellow dot) and orientation ot (black arrow)

Hilbert maps to build a probabilistic occupancy map updated
sequentially via sensing.

III. PROBLEM FORMULATION

In this work we assume that the sensor is noiseless, that
segmentation in a sensed volume is perfect, and that the
time required to perform the sensing action and associated
segmentation dominates the time required to move the sensor
between sensing poses. We also assume that anatomy is rigid
such that there is no deformation during sensing.

We consider a case where tumors are embedded in an
anatomical environment A ⊂ R3, e.g., a patient’s organ.
We define the tumors as T ⊂ A, a possibly disconnected
set of arbitrary geometry. We define a sensor workspace S
that includes N possible sensing poses si for i = 1, · · · , N .
A sensing pose si is a vector concatenating position and
orientation, i.e., si = [pi,oi], where pi ∈ R3 and oi ∈
SO(3) are the sensing position and orientation, respectively
(see Fig. 2). We define a general sensor model as the set
of points, vi ⊂ R3 that are sensed during a sensing action
performed at si, e.g., the volume visualized by an ultrasound
sensing action performed when the transducer is centered and
oriented at si.

Let SM ⊂ S then be an ordered sequence of k sensing
actions where SM = {s1, · · · , st, · · · , sk} and |SM| = k ≤
N . The sensed volume of a given sequence SM is then

VSM =

k⋃
i=1

vi.

The goal then is to determine a sequence of sensing actions
SM of minimal length (i.e., |SM|), such that the geometry
of all the tumors are mapped with high certainty.

IV. METHOD

At a high level, our method is composed of two main
pieces: (i) a 3D probabilistic occupancy map, implemented
as a posterior likelihood distribution representing the likeli-
hood that any point in space is occupied by a tumor, and
(ii) an iterative optimization-based framework that reasons
over the current distribution, determines the next sensing
location, performs the sensing, and updates the distribution



Algorithm 1: Sensor Sequence Planning
Input: Sensor workspace S, Search space A
Output: A sequence of sensing configurations SM

1 initialize ω ← µ0,Σ0

2 t← 0
3 while time remains do
4 t← t+ 1
5 if t = 1 then
6 st ← random(S)
7 SM ← st
8 else
9 st ← NextQuery(t, ω, S, x∗)

10 SM ← concatenate(SM, st)
11 end
12 Acquire sensor data Dt given st
13 µt,Σt ← learn parameters(Dt, ω)
14 ω ← µt,Σt

15 end
16 return SM

Algorithm 2: NextQuery
Input: t, ω, S, x∗
Output: Next sensing pose st

1 at ← arg maxx∗ EI(x∗, ω)
2 st ← next sensing pose(at, S)
3 return st

based on what was sensed. Our method performs (ii) in a
loop, iteratively updating (i) to improve the occupancy map,
localizing the tumor(s) quickly and accurately. The method
is outlined in Algorithm 1.

A. Sensor Model

In this work we consider a sensing action at sensing
pose si ∈ S to be a cone-shaped volumetric occupancy
map of the anatomy in the cone. In practice this could
come from automated segmentation of a localized ultrasound
sensing action, for instance. This cone then defines the sensor
volume vi (see Fig. 3). Points within the cone are then
labeled as either occupied (i.e., part of tumor geometry), or
unoccupied (i.e., not tumor). More formally, at iteration t,
for each point in the cone x ∈ vt we define an occupancy
indicator y ∈ {0, 1} denoting whether x is sensed as part
of a tumor. This then defines the tuple (x, y) for each point
in vt. We define the set of these tuples for a given sensing
action as the sensor data Dt. The sensor data Dt acquired
from each measurement is used to update the sequential
Bayesian Hilbert map parameters which define a probabilistic
occupancy map of the unsensed anatomy, described below.

B. 3D Occupancy Mapping

We leverage sequential Bayesian Hilbert maps to model
the occupancy states of given anatomical environments in
an iterative manner. Essentially, sequential Bayesian Hilbert

Fig. 3: Example sensing action. In the cone-shaped sensing volume, oriented
normal to the surface, the unoccupied free points (purple) and occupied
tumor points (yellow) are determined.

maps define a classifier that estimates the probability of an
unsensed point x being occupied. Kernel functions define
the sequential Bayesian Hilbert map features where for some
kernel k, k(x, x̃j), the kernel evaluates the similarity between
the query point x and a hinge point x̃j that is fixed at
some location in the search space to be mapped. The feature
vector Ψ(x) represents the vector of kernel evaluations to all
hinge points in the space, Ψ(x) = (k(x, x̃1), k(x, x̃2), · · · ).
Following [7], we fix M hinge points x̃j for j = 1, · · · ,M
spatially in A to compute the feature vector Ψ(x) ∈ R1×M .
We then define the likelihood of occupancy using the feature
vector via a parametric logistic-regression model,

P (y|x,w) = σ(wΨT (x)),

where σ(·) is the sigmoid function and w ∈ R1×M is a linear
weight vector. After sensing observation t of data collection,
we model a normal distribution over the weight vector,
w ∼ N (µt,Σt), with mean µt ∈ R1×M and variance Σt ∈
R1×M . We define the vector of all parameters ω = {µ,Σ}.
Note that in sequential Bayesian Hilbert maps the weight
vector w is typically initialized with zero mean and high
variance, representing that we do not have prior knowledge
on the distribution. We use the squared exponential kernel in
our implementation

k(x, x̃) = exp
(
−γ||x− x̃||2

)
(1)

where γ is a hyper-parameter defining the length scale of the
kernel.

Given the model we then wish to learn the mean and
variance of the parameter distribution ω. As its name sug-
gests, sequential Bayesian Hilbert maps use Bayes’ theorem
to model the posterior distribution of the parameter ω as:

P (w|x, y) =
P (y|x,w)P (w)

P (y)
.

The posterior over weights P (w|x, y) cannot be explicitly
computed because of the combination of the sigmoidal likeli-
hood and Gaussian prior, [7] provides a way to approximate
the posterior Q(ω) defined also as Gaussians by estimating
the parameters ω through expectation-maximization (EM).



The learn parameter(·) function in Algorithm 1 is a
function for estimating the parameters ω. (See [7] for further
details).

This then defines a continuous probabilistic occupancy
map, e.g., for any query point x∗ ∈ A, the probability of
occupancy is defined as P (y|x∗,w).

C. Iterative Optimization-Based Framework

Given the sequential Bayesian Hilbert map at a given
iteration, we must determine the next sensing pose to gather
the most relevant information and update the map. This
process is outlined in Algorithm 2. The sequential Bayesian
Hilbert map provides a probabilistic occupancy map defined
over the 3D anatomy A, but the sequential Bayesian Hilbert
map has no knowledge of our sensor workspace S. As such,
we will first determine a point in A from the sequential
Bayesian Hilbert map that should be sensed next, and then
determine a pose in S that will do so effectively.

We leverage Bayesian optimization to determine the next
query point at ∈ A. To do so, we must define an acquisition
function based on the posterior distribution provided by the
sequential Bayesian Hilbert map at the current iteration. As is
frequently the case in Bayesian optimization, in our problem
it is important to define an acquisition function that balances
exploitation and exploration. Insufficient exploitation may
lead to failure to fully map the tumors while insufficient
exploration may result in not mapping tumors in unexplored
regions. To balance these, we choose Expected Improvement
(EI) [16] as our acquisition function.

More formally, EI is defined as

EI(x∗) = E[max(0, f(x∗)− f(x+))],

where f(·) is an objective function which in our method is
the occupancy likelihood distribution, P (y|x∗,w), defined
by the Bayesian Hilbert map at the current iteration, and
f(x+) is the highest value of the distribution. The expected
improvement can be expressed in closed form [16]:

EI(x∗, ω) = (µ− f(x+)− ξ)Φ(
µ− f(x+)− ξ

σ
)

+Σφ(
µ− f(x+)− ξ

σ
)

(2)

where Φ(·) is the cumulative distribution function, φ(·) is the
probability density function, and ξ is an exploration param-
eter. Mean µ and standard deviation Σ are also computed
via the sequential Bayesian Hilbert map. We are able to
determine the next query point at ∈ A by optimizing the
acquisition function, at = arg maxx∗ EI(x∗, ω).

We next must determine the sensing pose st corresponding
to the query point at (next sensing pose in Algo-
rithm 2, line 2). To do so, we choose a sensing pose that
has an orientation that closely aligns with the vector defined
by the pose’s position and the query point, i.e., a pose that
points toward the query point (see Fig. 4). We search over
the sensing poses and for each define a query vector q as
the vector between the given sensing pose’s position p and
the query point at. We then determine the angular difference

Fig. 4: Determining the next sensing pose st = (pt,ot). When a query
vector (black vectors) and a sensing pose’s surface normal (orange vectors)
are aligned (blue box), the corresponding pose is selected.

between the sensing pose’s orientation o and q. We select
the first sensing pose found such that this angle is below a
given threshold.

D. Combined Method

Combining the pieces above we get the full method,
outlined in Algorithm 1 and Algorithm 2. The method takes
as input the sensor workspace S and the region to search over
A, and outputs a sequence of sensing configurations SM to
detect the tumor(s) T embedded in the anatomical environ-
ment. We first initialize the parameter ω of each kernel of
the Bayesian Hilbert maps (Algorithm 1 line 1). The first
sensing pose s1 is then randomly chosen from S as we do
not yet have knowledge of the distribution (Algorithm 1 line
6). Afterwards, sensing poses are determined by Algorithm 2
(called by line 9 of Algorithm 1) and the sequence of poses
is accumulated in SM (concatenate in Algorithm 1, line
10). For each sensing pose, the corresponding sensor data Dt

is collected (Algorithm 1 line 12) and is then used to update
the posterior distribution of the parameter ω (Algorithm 1
line 13). The method repeats as time allows, refining the
estimation of the tumor volumes with increasing iterations.

V. EXPERIMENTS AND RESULTS

We evaluate our method in two ways. First, we evaluate the
method’s efficiency and compare against random sampling
and a multi-resolution scan as strategies for determining
sensing pose sequences. We do so in synthetic, randomly
generated example scenarios and demonstrate our method is
capable of localizing the embedded tumors with significantly
fewer sensing actions. Second, we evaluate our method’s
accuracy as a function of the number of sensing actions
in the presence of multiple tumors. We do so both in a
synthetic environment with randomly placed tumors and
in a real medical scenario segmented from a patient CT
scan in the liver tumor segmentation (LiTS) dataset [10].
For all experiments we set the parameters γ = 5 in the
kernel function (1), ξ = 0.01 in the acquisition function (2),
and use 2890 hinge points distributed on a 3D grid in the
environments.

A. Evaluating Efficiency

To evaluate our method’s sampling efficiency quantita-
tively, we generate a synthetic organ surface and place
a spherical tumor volume randomly below it (see Fig. 5
(a)). We refer to this as scenario 1. The randomly placed



Fig. 5: Scenario 1, trial 1. The dots (orange) indicate the sensing poses chosen by the methods to identify the embedded tumor. (a) The surface (blue)
and tumor (black). (b) Our method requires 31 samples while balancing the exploration of the entire search space and the exploitation of regions where
tumors may lie. (c) Random sampling requires 558 samples. (d) Multi-resolution scan requires 270 samples.

sphere-shaped tumor is composed of 500 data points and the
sensor workspace is composed of 14,400 data points. The
synthetic surface is made uneven to approximate the uneven
nature of the surface of human organs and is generated via
the get test data function provided by Matplotlib, a
graphical plotting library for Python. We define the positions
in S as the points on the surface and compute the orientation
of each sensing pose as the surface normal perpendicular to a
tangent plane fit to each surface point’s 10 nearest neighbors.

We compare our method against random sampling, in
which we draw sample poses uniformly at random from
S; and a coarse-to-fine multi-resolution scan, in which the
search space is divided into increasingly fine cells in each
round, i.e., in the first round there is one cell containing the
entire search space, in the second round the space is divided
into four cells, etc. At each round we apply sensing actions to
the center of each cell, ordered as a raster scan. We measure
the number of samples required by each method to detect the
tumor, defined as having sensed 95% of the tumor points.

We average the results over ten trials in which the tumor
is randomly placed below the surface. We demonstrate the
results for all methods across all trials in Fig. 6. As can be
seen, our method detects the tumor with much fewer samples.
Compared to our method, the random sampling method
required on average approximately 10.1 times the number
of sensing actions (258.6 required by random sampling
compared with 25.5 required by our method) and the multi-
resolution scan required approximately 6.5 times the number
of sensing actions (172.2 required by the multi-resolution
scan compared with 25.5 required by our method) to fully
sense the tumor. The specific sensing poses determined by
the method for one of the trials are shown in Fig. 5.

This analysis demonstrates our method’s ability to effi-
ciently generate sensor poses that sense the tumor geometry.

B. Evaluating Accuracy

A notable property of the Bayesian Hilbert occupancy
map is that it incorporates probabilistic information about
regions not yet sensed, which is refined with more sensing
actions. Here we evaluate the accuracy of the occupancy map
generated by our method as the number of sensing actions
performed increases. We consider two scenarios, a synthetic

Fig. 6: The number of sensing pose samples required by each method for 10
random trials. The mean and standard deviation across the trials are 25.5±
9.0 for our method, 258.8±156.7 for random sampling, and 172.2±84.7
for the multi-resolution scan.

scenario with three tumors randomly placed, named scenario
2 (see Fig 7 (a)), and a real-life scenario with multiple tumors
in a patient’s liver, segmented via 3D Slicer [19] from a CT
scan in the liver tumor segmentation (LiTS) dataset [10],
which we name the LiTS scenario (see Fig. 8 (a) and Fig. 9
(b)). S for scenario 2 is generated as for scenario 1, and S
for the LiTS scenario is generated by taking points on the
top surface of the liver segmentation (see Fig. 8 (a)) and
defining surface normals as in scenarios 1 and 2.

We note that the probabilistic occupancy map being
produced by our method acts as a binary classifier when
combined with a threshold value. As a metric to evaluate
binary classifiers, both the area under the receiver oper-
ating characteristics (AUROC) curve and the area under
the precision-recall curve (AUPRC) are popular metrics.
However, the ROC tends to provide an optimistic view
of the performance when it comes to imbalanced datasets,
potentially resulting in incorrect interpretation [20]. As our
case is highly imbalanced, e.g., approximately a 200:1 ratio
of free space to tumor volume in scenario 2 and a 300:1
ratio in the LiTS scenario, we choose the AUPRC as our
evaluation metric.

For both scenario 2 and the LiTS scenario, we evaluate the
AUPRC at each iteration, i.e., sensing action, and evaluate
how the AUPRC improves as the iterations increase. At each
iteration the Bayesian Hilbert occupancy map is refined,
becoming more accurate, and the AUPRC improves. As our
method is subject to random initialization, we average the



Fig. 7: (a) Scenario 2 consists of three sphere-shaped tumors and the same sensor workspace as scenario 1. The tumors are randomly positioned in each
trial. (b) Top view (x-y plane) of the final occupancy map for the 5th trial. The orange dots indicate the sensing poses chosen by our method. (c) The
side view (x-z plane) of the occupancy map. (d) The mean (orange line) and standard deviation (shaded area) of the AUPRC as the iterations increase,
averaged across 10 trials. The AUPRC converges to 0.88 within 50 sensing iterations for all trials. (e) The precision-recall curve at the last iteration of
the 5th trial, with AUPRC of 0.89.

Fig. 8: (a) The LiTS scenario is composed of three tumors in the liver. (b) Top view of the final occupancy map of the 5th trial. The orange dots indicate
the sensing poses chosen by our method. (c) The side view of the occupancy map. (d) The mean (blue line) and standard deviation (shaded area) of the
AUPRC as the iterations increase, averaged across 10 trials. The AUPRC graph converges to 0.84 within 30 steps for all trials. (e) The precision-recall
curve at the last iteration of the 5th trial, with AUPRC of 0.84.

(a) CT scan and segmentation (b) 3D rendering

Fig. 9: Liver and tumors segmented from the LiTS data. (a) The liver and
tumors were segmented via 3D Slicer [19]. (b) The resulting 3D geometry
utilized for evaluation.

results across 10 random trials with different initializations.
Fig. 7 shows the results for scenario 2. To evaluate

correct classification we discretize the search space into
6292 points on a 3D grid. Fig. 7 (d) shows the mean and
standard deviation of the AUPRC for 10 trials as the sensing
iterations increase, converging to 0.88 at 50 iterations. A
high AUPRC indicates that the method correctly labels
the positive examples (tumors) without falsely labeling the
negative examples (free space) as positive. Considering that
we have a highly imbalanced environment, the baseline of
an uninformed model would be 0.006 (the ratio of positives
to negatives). The resulting AUPRC of 0.88 indicates high
accuracy. Fig. 7 (e) shows the specific precision-recall curve
at iteration 50 for one of the trials, and Fig. 7 (b) and (c)
show two views of the occupancy map.

Fig. 8 shows the results for the LiTS scenario. We task
the method with correctly classifying the tumors inside the

liver (using the tumor segmentations as ground truth). In
this scenario we discretize the liver search space into 6292
evenly spaced points on a 3D grid for evaluation. As with
scenario 2, we average over 10 runs. In the LiTS scenario
our method converges to an average of 0.84 AUPRC after
30 sensing iterations, demonstrating high accuracy when
compared with the baseline of 0.003 of an uninformed model
for this scenario.

VI. CONCLUSION

In this work, we presented a method for planning sens-
ing actions that models the anatomical environment using
sequential Bayesian Hilbert maps and determines the sens-
ing strategy using Bayesian optimization. We evaluated our
method in three anatomical scenarios, a synthetic scenario
with a single tumor, a synthetic scenario with multiple
tumors, and a real-life case of tumors in a patient’s liver
segmented from a CT scan. In the first scenario, we evaluated
the efficiency of our method by comparing it with random
sampling and a multi-resolution scan, showing that it outper-
forms other methods with respect to the number of sensing
actions required. In the other two scenarios, we demonstrated
the ability of our method to accurately map the tumors.

In future work, we plan to relax our assumptions. This
includes augmenting our method with the ability to consider
deformable organs and other anatomical features beyond
tumors. We also plan to integrate real sensing via, e.g.,
ultrasound and implement the method on a physical robot.
Further, we plan to extend the method to consider the sensing
path rather than just discrete sensing actions.
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