
Special Issue: RSS2019

The International Journal of
Robotics Research
2023, Vol. 0(0) 1–26
© The Author(s) 2023

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/02783649231171646
journals.sagepub.com/home/ijr

Asymptotically optimal inspection planning via
efficient near-optimal search on sampled
roadmaps

Mengyu Fu1, Alan Kuntz2, Oren Salzman3 and Ron Alterovitz1

Abstract
Inspection planning, the task of planning motions for a robot that enable it to inspect a set of points of interest, has
applications in domains such as industrial, field, and medical robotics. Inspection planning can be computationally
challenging, as the search space over motion plans grows exponentially with the number of points of interest to inspect. We
propose a novel method, Incremental Random Inspection-roadmap Search (IRIS), that computes inspection plans whose
length and set of successfully inspected points asymptotically converge to those of an optimal inspection plan. IRIS in-
crementally densifies a motion-planning roadmap using a sampling-based algorithm and performs efficient near-optimal
graph search over the resulting roadmap as it is generated. We prove the resulting algorithm is asymptotically optimal under
very general assumptions about the robot and the environment. We demonstrate IRIS’s efficacy on a simulated inspection task
with a planar five DOFmanipulator, on a simulated bridge inspection task with an Unmanned Aerial Vehicle (UAV), and on a
medical endoscopic inspection task for a continuum parallel surgical robot in cluttered human anatomy. In all these systems
IRIS computes higher-quality inspection plans orders of magnitudes faster than a prior state-of-the-art method.

Keywords
Inspection planning, coverage planning, motion planning

1. Introduction

In this work, we investigate the problem of inspection
planning, or coverage planning (Almadhoun et al., 2016;
Galceran and Carreras 2013). Here, we consider the specific
setting where we are given a robot equipped with a sensor
and a set of points of interest (POI) in the environment to be
inspected by the sensor. The problem calls for computing a
minimal-length motion plan for the robot that maximizes the
number of POI inspected. This problem has a multitude of
diverse applications, including surface inspections in in-
dustrial production lines (Raffaeli et al., 2013), surveying
the ocean floor by autonomous underwater vehicles
(Bingham et al., 2010; Gracias et al., 2013; Johnson-
Roberson et al., 2010; Tivey et al., 1997), structural in-
spection of bridges using aerial robots (Bircher et al., 2015,
2016), and medical applications such as inspecting patient
anatomy during surgical procedures (Kuntz et al., 2018).

Naı̈vely computed inspection plans may enable in-
spection of only a subset of the POI and may require motion
plans orders of magnitude longer than an optimal plan, and
hence may be undesirable or infeasible due to a robot’s
battery capacity or time constraints. In medical applications,
physicians may want to maximize the number of POI in-
spected for diagnostic purposes. Additionally, the procedure
should be completed as fast as is safely possible to reduce

costs and improve patient outcomes, especially if the patient
is under anesthesia during the procedure. For example, a
robot assisting in the diagnosis of the cause of a pleural
effusion (a serious medical condition that can cause the
collapse of a patient’s lung) will need to visually inspect the
surface of the collapsed lung and chest wall inside the body
in as short a time as possible (see Figure 1(a)). In structural
inspecting applications, Unmanned Aerial Vehicles
(UAVs), or drones, can be used to efficiently inspect the
complex geometry of built structures. High-quality in-
spection plans could reduce inspection time and reduce
costs. Bridge inspection (see Figure 1(b)), for example, is
critical to ensuring bridge safety since almost 40% of the
bridges in the United States exceed their 50-year design

1Department of Computer Science, University of North Carolina at Chapel
Hill, Chapel Hill, NC, USA
2Robotics Center and Kahlert School of Computing, University of Utah,
Salt Lake City, UT, USA
3Computer Science Department, Technion - Israel Institute of Technology,
Haifa, Israel

Corresponding author:
Mengyu Fu, Department of Computer Science, University of North
Carolina at Chapel Hill, Sitterson Hall, 201 S. Columbia Street, Chapel
Hill, NC 27599, USA.
Email: mfu@cs.unc.edu

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/02783649231171646
https://journals.sagepub.com/home/ijr
https://orcid.org/0000-0002-5237-1220
https://orcid.org/0000-0002-4492-1384
mailto:mfu@cs.unc.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F02783649231171646&domain=pdf&date_stamp=2023-06-21

life (ASCE 2016). We note that it may not be possible to
inspect some POI due to obstacles in the environment and the
kinematic constraints of the robot. Our goal is to compute
kinematically feasible collision-free inspection plans that
maximize the number of POI inspected, and of the motion
plans that inspect those POI we compute a shortest plan.

Inspection planning is computationally challenging be-
cause the search space is embedded in a high-dimensional
configuration space X (the space of all parameters that
determine the shape of the robot) (Choset et al., 2005;
Latombe 1991; LaValle 2006). Even finding the shortest plan
between two points in X that avoid obstacles (without rea-
soning about inspection) is computationally hard.1 If wewant
to compute a minimum-length motion plan that maximizes
the number of POI inspected, the complexity of our problem
is increased as we have to simultaneously reason about the
system’s constraints, motion plan length, and POI inspected.

There are multiple approaches to computing inspection
plans. Optimization-based methods locally search over the
space of all inspection plans (Bircher et al., 2015; Bogaerts
et al., 2018). Decoupled approaches first independently select
suitable viewpoints and then determine a visiting sequence,
that is, a motion plan for the robot that realizes this sequence
(Danner and Kavraki 2000; Englot and Hover 2011). Finally,
recent progress in motion planning (Karaman and Frazzoli
2011) has enabled methods to exhaustively search over the
space of all motion plans (Bircher et al., 2017; Kafka et al.,
2016; Papadopoulos et al., 2013) thus guaranteeing as-
ymptotic optimality, an important feature in many applica-
tions, including medical ones. Roughly speaking, asymptotic
optimality for inspection planning means these methods
produce inspection plans whose length and the number of
points inspected will asymptotically converge to those of an
optimal inspection plan, given enough planning time.

Of all the aforementioned methods, only algorithms in the
latter group provide any formal guarantees on the quality of the
solution. This guarantee is achieved by attempting to exhaus-
tively compute the set of Pareto-optimal inspection plans em-
bedded in X for which full coverage has not been obtained.
Namely, for every configuration q2X , they (asymptotically)
compute the set of paths Πq ending at q and starting from a
given start configuration qs such that "π1, π2 2Πq, either π1 is
shorter than π2 and π2 covers POI not covered by π1 or vice
versa. OnceΠq contains a path π∗q that covers all POI, this path
is considered as a candidate solution. In our setting, the set of
Pareto-optimal inspection plans is the minimal set of inspection
plans such that each plan is either shorter or has better coverage
of the POI than any other inspection plan.2 Unfortunately, this
comes at the price of very long computation times as the size of
the search space is exponential in the number of POI.

To this end, we introduce Incremental Random
Inspection-roadmap Search (IRIS), a new asymptotically
optimal inspection-planning algorithm. IRIS incrementally
constructs a sequence of increasingly dense roadmaps—graphs
embedded inX wherein each vertex represents a collision-free
configuration and each edge a collision-free transition between
configurations—and computes an inspection plan on the
roadmaps as they are constructed (see Figure 2).

Unfortunately, even the problem of computing an op-
timal inspection plan on a graph (and not in the continuous
space) is computationally hard. To this end, our key insight
is to compute a near-optimal inspection plan on each
roadmap. Namely, we compute an inspection plan that is at
most 1 + ε the length of an optimal plan while covering at
least p-percent of the number of POI (for any ε ≥ 0 and
p2(0,1]). This additional flexibility allows us to improve the
quality of our inspection plan in an anytime manner, that is,
the algorithm can be stopped at any time and return the best

Figure 1. Examples of applications of inspection planning. (a) Inspection planning in human anatomy. Left: The Continuum
Reconfigurable Incisionless Surgical Parallel (CRISP) robot (Anderson et al., 2017; Mahoney et al., 2016) is composed of needle-
diameter tubes assembled into a parallel structure inside the patient’s body (in which a tube uses a snare system to grip a tube with a camera
affixed to its tip) and then robotically manipulated outside the body, allowing for smaller incisions and faster recovery times compared to
traditional endoscopic tools (which have larger diameters). Middle: The CRISP robot in simulation inspecting a collapsed lung, a scenario
segmented from a CT scan of a real patient with this condition. The visualization shows the robot (orange), the lungs (pink), and the pleural
surface visible (green) and not visible (blue) by the robot’s camera sensor in its current configuration. Right: Two example configurations
with inspected POI. The CRISP robot (orange) inspects POI (blue) on the organ surface, and visible points are covered by the cone shape
(yellow). (b) Inspection planning for bridge structures. A UAV, shown as a blue sphere, inspects points on the surface of a bridge structure.
At a configuration, some points are visible (shown in green) while other points are not visible (shown in orange).

2 The International Journal of Robotics Research 0(0)

inspection plan found up until that point. We achieve this by
incrementally densifying the roadmap and then searching
over the densified roadmap for a near-optimal inspection
plan—a process that is repeated as time allows. By reducing
the approximation factor between iterations, we ensure that
our method is asymptotically optimal.

The key contribution of our work is a computationally
efficient algorithm to compute provably near-optimal in-
spection plans on graphs. Coupled with our method for
generating this graph, this algorithmic building block en-
ables us to dramatically outperform Rapidly-exploring
Random Tree Of Trees (RRTOT) (Bircher et al., 2017)—
a state-of-the-art asymptotically optimal inspection planner.
Specifically, we demonstrate the efficacy of our approach in
simulation for several complex robotic systems (Figure 1),
including a continuum robot with complex kinematics—the
needle-diameter Continuum Reconfigurable Incisionless
Surgical Parallel (CRISP) robot (Anderson et al., 2017;
Mahoney et al., 2016), working in a medically inspired
setting involving the diagnosis of a pleural effusion.

In this paper, we are providing a refined version of our
results in Fu et al. (2019), and two important extensions. First,
we show results for a simulated bridge inspection task with a
UAV, where the inspection target has a complex structure and
the underlying roadmap to compute a near-optimal inspection
plan on is much larger (e.g., having more nodes and edges).
Second, we prove that IRIS is asymptotically optimal under
very general system and environment assumptions. These
extensions show that IRIS can be used for general complex-
structure inspection while providing provable guarantees.

2. Related Work

2.1. Sampling-based motion planning

Motion planning algorithms aim to compute a collision-free
motion for a robot to accomplish a task in an environment

cluttered with obstacles (Halperin et al., 2018; LaValle
2006; Lynch and Park 2017). A common approach to
motion planning is by sampling-based algorithms that
construct a roadmap. Examples include the Probabilistic
Roadmaps (PRMs) (Kavraki et al., 1996) (often for solving
multiple queries) and the Rapidly-exploring Random Trees
(RRTs) (LaValle and Kuffner 2001) for solving single
queries. These methods, and many variations thereof, are
probabilistically complete—namely, the likelihood that
they will find a solution, if one exists, approaches certainty
as computation time increases.

Recent variations of these methods, such as PRM* and
RRT* (Karaman and Frazzoli 2011), improve upon this
guarantee by exhibiting asymptotic optimality—namely,
that the quality of the solution obtained, given some cost
function, approaches the global optimum as computation
increases. Roughly speaking, this is achieved by increasing
the (potential) edge set of roadmap vertices considered as its
size increases (Karaman and Frazzoli 2011; Solovey et al.,
2018). One such algorithm is the Rapidly-exploring Random
Graphs (RRGs) (Karaman and Frazzoli 2011) which will be
used in our work. RRG combines the exploration strategy of
RRT with an updated connection strategy that allows for
cycles in the roadmap. It requires solving the two-point
boundary value problem (LaValle 2006), which is only ef-
ficiently solvable for some robotic systems (including ours).

Guaranteeing asymptotic optimality can come with a heavy
computational cost. This inspired work on planners that trade
asymptotic optimality guarantees with asymptotic near opti-
mality (e.g., Li et al. (2016);Marble andBekris (2011); Salzman
and Halperin (2016)). Asymptotic near optimality states that
given an approximation factor ε ≥ 0, the solution obtained
converges to within a factor of (1 + ε) of the optimal solution
with probability one, as the number of samples tends to infinity.
Relaxing optimality to near optimality allows a method to
improve the practical convergence rate while maintaining de-
sired theoretic guarantees on the quality of the solution.

2.2. Inspection planning

Many inspection-planning algorithms, or coverage planners,
decompose the region containing the POI into multiple sub-
regions and then solve each sub-region separately (Galceran
and Carreras 2013). These methods have limitations, how-
ever, such as when occlusions play a significant role in the
inspection (Englot and Hover 2012), or when kinematic
constraints must be considered (Edelkamp et al., 2017).

Other approaches simultaneously consider all POI. One
approach decouples the problem into the coverage sampling
problem (CSP) and the multi-goal planning problem (MPP),
and solves each independently (Bircher et al., 2015; Danner
and Kavraki 2000; Edelkamp et al., 2017; Englot and
Hover, 2011, 2012). In CSP, a minimal set of viewpoints
that provide full inspection coverage is computed. In MPP, a
shortest tour that connects all the viewpoints is computed.
These correspond to solving the art gallery problem and the
traveling salesman problem, respectively. Several of these

Figure 2. Overview of the IRIS algorithmic framework.

Fu et al. 3

variants have been shown to be probabilistically complete
(Englot and Hover 2012), but none provide guarantees on
the quality of the final solution.

The set of viewpoints and the inspection plan itself can
also be generated simultaneously. Papadopoulos et al. (2013)
propose the Random Inspection Tree Algorithm (RITA). RITA
takes into account the differential constraints of the robot and
computes both target points for inspection and the trajectory to
visit the targets simultaneously. Bircher et al. (2017) propose
Rapidly-exploring Random Tree Of Trees (RRTOT) which
constructs a meta–tree structure consisting of multiple RRT*
trees. Both methods, which were shown to be asymptotically
optimal, iteratively generate a tree, in which the inspection plan
is enforced to be a plan from the root to a leaf node. However,
each inspection plan does not consider configurations from
other branches in the tree which may cause long planning
times. This motivates our RRG-based approach.

2.3. Path planning on graphs

Planning a minimal-cost path on a graph is a well-studied
problem. When the cost function has an optimal sub-
structure (namely, when subpaths of an optimal path are also
optimal), efficient algorithms such as Dijkstra (Dijkstra
1959), A* (Hart et al., 1968), and the many variants
thereof can be used. However, in certain settings, including
ours, this is not the case. For example, Tsaggouris and
Zaroliagis (2004) consider the case where every edge has
two attributes (e.g., cost and resource), and the cost function
incorporates the attributes in a non-linear fashion.

It is worth mentioning the idea of progressively tightening
the approximation factor was also adopted in some anytime
A* algorithms based on weighted A* (Pohl 1970), including
Anytime Repairing A* (ARA*) by Likhachev et al. (2003)
and RestartingWeighted A* (RWA*) byRichter et al. (2010).
Anytime Nonparametric A* (ANA*) by van Den Berg et al.
(2011) furthermore gets rid of the explicit approximation
parameter and performs solution improvement adaptively.
Nevertheless, as these methods are based on weighted A*, a
prerequisite for good performance is a high-quality heuristic,
which is not easy to obtain in the case of inspection planning
due to the lack of optimal substructure. Furthermore, these
methods focus on static graphs (while in our case the graph is
incrementally updated) and consider only a single objective
(while in our case we have two objectives, inspection and
path length). When looking at multiple objectives (though
still considering static graphs), recent work by Zhang et al.
(2022) extends the approach presented in this paper to
suggest an anytime approximate bi-criteria search algorithm.

Inspection planning also bears resemblance to multi-
objective path planning. Here, we are given a set of cost
functions and are required to find the set of Pareto-optimal
paths (Pardalos et al., 2008). Unfortunately, this set may be
exponential in the problem size (Ehrgott and Gandibleux
2000). However, it is possible to compute a fully
polynomial-time approximation scheme (FPTAS) for many
cases (Tsaggouris and Zaroliagis 2009). For additional

results on path planning with multiple objectives or when
the cost function does not have an optimal substructure, see
for example, (Chen and Nie 2013; Reinhardt and Pisinger
2011; Hernández et al., 2023) and references within.

3. Problem definition

In this section, we formally define the inspection planning
problem. The robot operates in a workspace W � R

3

amidst a set of obstacles Wobs � W. The robot’s config-
uration q is a d-dimensional vector that uniquely defines the
shape of the robot (including, e.g., rotation angles and
translational extension of all joints). The set of all such
configurations is the configuration space X . The geometry
of the robot is a configuration-dependent shape
ShapeðqÞ � W, here, Shape(�) is a mapping from configu-
ration spaceX to workspaceW, determining the subset of the
workspace that the robot occupies for a given configuration.
We say that q2X is in collision if ShapeðqÞ \Wobs ≠ . Let
X obs4X be the obstacle space, such that X ∖Xobs is an open
set. Then the collision-free space is defined as
X free ¼ clðX ∖X obsÞ, where cl(�) is closure of a set. In this
work we define a motion plan for the robot as a path P in X ,
which is represented as a sequence of n configurations {q0,
…, qn�1} (vertices) connected by straight-line segments
(edges) in X . And we say that P is collision-free if all
configurations along P (vertices and edges) are collision-free.
We assume that we have a distance functionl:X ×X →R

and denote the length of a path P as the sum of the distances
between consecutive vertices, i.e.,l(P)d

P
il(qi, qi�1).

We assume that the robot is equipped with a sensor S and
we are given a set of k points of interest (POI)
I ¼ fi1,…, ikg in W. We model the sensor as a mapping
S :X → 2I , where 2I is the power set of I and S denotes the
subset of I that can be inspected from each configuration.
By a slight abuse of notation, given a path Pwe set SðPÞ : ¼
[n�1
i¼0 SðqiÞ and note that in our model, we only inspect I

along the vertices of a path.

Definition 1. Inspection coverage. A point of interest i2I is
said to be covered by a configuration q2X or by a path P if
i2SðqÞ or if i2SðPÞ, respectively. In such a setting, we say
that q (or P) covers the point of interest i.

Given a start configuration qs 2X , POI I , and a sensor
model S, the inspection planning problem calls for com-
puting a collision-free path P starting at qs which maximizes
jSðPÞj while minimizingl(P). Note that this is not a bi-
criteria optimization problem—our primary optimization
function is maximizing the coverage of our path. Out of all
such paths we are interested in the shortest one.

4. Method overview

In this section, we provide an overview of IRIS—our algo-
rithmic framework for computing asymptotically optimal in-
spection plans. A key algorithmic tool in our approach is to
cast the continuous inspection planning problem (Sec. 3) to a

4 The International Journal of Robotics Research 0(0)

discrete version of the problemwhere we only consider a finite
number of configurations from which we inspect the POI, and
a discrete set of feasible movements between those configu-
rations. The assumption that inspection of POI only happens at
vertices is not significantly limiting since a robot’s motion can
be approximated by multiple vertices, and many inspection
applications require non-zero time to complete a high-quality
sensor measurement (e.g., to obtain non-blurry images and
high-accuracy lidar scans), which can be effectively encoded at
vertices. Thus, we start in Sec. 4.1 by formally defining the
graph inspection problem and then continue in Sec. 4.2 to
provide an overview of how IRIS builds and uses such graphs.
We then describe the method in detail in Sec. 5, and in Sec.
6 show that IRIS’s solution converges to the length and
coverage of an optimal inspection path.

4.1. Graph inspection problem

Similar to the (continuous) inspection problem, a graph in-
spection problem is a tuple ðG,l,S,l, vsÞ where G ¼ ðV, EÞ is
a motion-planning roadmap (namely, a graph embedded in X ,
in which every vertex v2V is a configuration and every edge
ðu, vÞ 2 E denotes the transition from configuration u to v), I
and S are defined as in Sec. 3,l: E→R denotes the length of
each edge in the roadmap, and vs is the start vertex (corre-
sponding to the start configuration qs). A path P on G is
represented by a sequence of vertices vi 2V such that P = {v0,
…, vn�1}, v0 = vs and ðvi, viþ1Þ 2 E. It is important to note that
there can be loops in a path, so it is possible that vm = vk form ≠
k. The length and coverage of P are defined as the total length
of P’s edges and the set of all points inspected when traversing
P, respectively. Namely, lðPÞ : ¼

Pn�2
i¼0lðvi, viþ1Þ and

SðPÞ : ¼ Uv2P SðvÞ. The optimal graph inspection problem
calls for a pathP* that starts at vs andmaximizes the number of
points inspected. Out of all such paths, P* has the minimal
length. Finally, a path is said to be near-optimal for some ε ≥
0 and p2(0,1] if jSðPÞj=jSðP*Þj ≥ p andl(P) ≤ (1 + ε) �l(P*).

4.2. Overview of IRIS

Our algorithmic framework, depicted in Figure 2, in-
terleaves sampling-based motion planning and graph
search. Specifically, we incrementally construct an RRT
T rooted at qs which implicitly defines a corresponding
RRG G. All edges in T are checked for collision with the
environment during its construction (so the roadmap is
guaranteed to be connected) while all the other edges of
G are not explicitly checked for collision. Lazy edge
evaluation, common in motion-planning algorithms
(Bohlin and Kavraki 2000; Hauser 2015; Dellin and
Srinivasa 2016; Salzman and Halperin 2015), allows us
to defer collision detection until absolutely necessary
and reduce computational effort. This is critical in our
domain of interest where computing Shape(�), the ge-
ometry of the robot as is defined in Sec. 3, typically
dominates algorithms’ running times (Niyaz et al.,
2018).

The roadmap G ¼ ðV, EÞ induces the subset of the POI
that can be inspected, denoted as IG : ¼ [v2VSðvÞ. Given
two approximation parameters ε ≥ 0 and p2(0,1], we
compute a near-optimal inspection path for the graph in-
spection problem ðG, IG,S,l, vsÞ by casting the problem as
a graph-search problem on a different graph GS (to be
defined shortly).

As we add vertices and edges to T incrementally, the
roadmap G is incrementally densified. In addition, we
tighten approximations by decreasing ε and increasing p
between iterations. As we will see (Sec. 6), this will ensure
that IRIS is asymptotically optimal.

5. Method

In this section, we detail the different components of IRIS.
Sections 5.1 and 5.2 describe how we construct a roadmap
and then search it, respectively. After describing in Sec
5.3 how we modify the approximation parameters used by
IRIS, we conclude in Sec. 5.4 with implementation details.

5.1. Roadmap construction

We construct a sequence of graphs embedded in X . Spe-
cifically, denote the RRT constructed at the i’th iteration as
T i defined over the set of vertices V i. We start with an empty
tree rooted at qs and at the i’th iteration sample a random
configuration, compute its nearest neighbor in T i, and
extend that vertex toward the random configuration. If that
extension is collision-free we add it to the tree. If not, we
repeat this process (see Kuffner and LaValle (2000); LaValle
(2006) for additional details regarding RRT).

Note that it is not necessary to add only one collision-free
configuration in each roadmap update. Adding multiple
configurations in one iteration does not hurt the theoretical
guarantees while providing us more room to improve an
inspection plan in terms of both inspection and path length.
There are different possible strategies to balance between
roadmap construction and graph search on the
roadmap. One example is Fu et al. (2021) where a condition
on additional inspection coverage is used to trigger graph
searches on the updated roadmap. As the major focus of this
paper is to provide a theoretical foundation for the proposed
algorithm framework, we only discuss the variant where
configurations are added one at a time.

The tree T i implicitly defines an RRG Gi ¼ ðV i, EiÞ
defined over the same set of vertices where every vertex is
connected to all other vertices within distance ri. Here, we
define ri as in Lemma 3 which will allow us to prove that our
approach is asymptotically optimal (see Sec. 6).

5.2. Graph inspection planning

We use the RRG described in Sec. 5.1 to define a graph
inspection problem, and then compute near-optimal in-
spection paths over this graph. Before describing how we

Fu et al. 5

compute near-optimal inspection paths, we first describe how
we compute optimal paths given a graph inspection problem.

5.2.1. Optimal planning. Given a graph inspection problem
ðG, IG,S,l, vsÞ, we compute optimal inspection paths by
formulating our inspection problem as a graph-search
problem on an inspection graph GS : ¼ ðVS , ESÞ. Here,
vertices are pairs comprised of a vertex u2V in the original
graph and subsets of IG. Namely, VS ¼ V × 2IG , and note
that jVSj ¼ OðjVj � 2jIGjÞ. An edge e between vertices
ðu, IuÞ and ðv, I vÞ exists if ðu, vÞ 2 E and Iu [SðvÞ ¼ I v. If
it exists, its cost is simplyl(u, v).

Any (possibly non-simple) path PG in the original graph G
from vs to u can be represented by a corresponding path PGS in
the inspection graph GS , from ðvs,SðvsÞÞ 2 VS to
ðu,SðPGÞÞ 2 VS , andlðPGÞ ¼lðPGSÞ. Thus, our algorithm
will run an A*-like search from ðvs,SðvsÞÞ 2 VS to any vertex
in the goal set Vgoal ¼ fðv, IGÞjv2Vg. An optimal inspection
path is the shortest path between ðvs,SðvsÞÞ and any vertex in
Vgoal. For a visualization, see Figure 3.Note that herewe assume
the graphG is connected and that the set of points to be inspected
is IG. This implies that an optimal inspection path always exists.

We can speed up this naı̈ve algorithm using the notion of
dominance, which is used in many shortest-path algorithms
(see, e.g., Salzman et al. (2017)). In our context, given two
paths P, P0 in our original roadmap G that start and end at the
same vertices, we say that P dominates P0 ifl(P) ≤l(P0) and
SðPÞJSðP0 Þ. Clearly, P is always preferred over P0. Thus,
when searching GS , if we compute a shortest path to some
node ðu, I uÞ of lengthlu, we do not need to consider any
path of length larger thanlu from all vertices ðu, I 0

uÞ such
that I 0

u4I u. For pseudo-code describing a general A*-like
search algorithm to optimally solve the graph inspection
problem, see Alg. 1 without lines 17-27.

While path domination may prune away paths in the open
list of the A* -like search, this algorithm is hardly practical
due to the exponential size of the search space (recall that
jVSj ¼ OðjVSj � 2jIGjÞ). In the next sections, we show how to
prune away large portions of the search space by extending
the notion of dominance to approximate dominance.

5.2.2. Near-optimal planning. To perform near-optimal
planning, we introduce the idea of approximate domi-
nance. Approximate dominance is a relaxed version of the
(strong) dominance mentioned above, characterized by
approximation parameters.

Let P, P0 be two paths in G that start and end at the same
vertices and let ε ≥ 0 and p2(0,1] be some approximation
parameters.

Definition 2. ε, p-domination. We say that path P ε,
p-dominates path P0 if l(P) ≤ (1 + ε) � l(P0) and
jSðPÞj ≥ p � jSðPÞ[SðP0 Þj ¼ p � jIGj.

Note that it is possible that both P ε, p-dominates P0

and P0 ε, p-dominates P. For a visualization of the notions
of dominance and the approximate dominance, see
Figure 4.

Intuitively, approximate dominance allows us to
dramatically prune the search space by only considering
paths that can significantly improve the quality (either in
terms of length or the set of POI inspected) of a given
path. When pruning away (strongly) dominated paths, it
is clear that they cannot be useful in the future. However,
if we prune away approximate-dominated paths, we
need to efficiently account for all paths that were pruned
away in order to bound the quality of the solution ob-
tained. If we prune away approximate-dominated paths
without any special consideration, the “errors” intro-
duced by each domination accumulate. To bound the
accumulated “error”, during the search, we need to
consistently keep track of “what is the best inspection
path if we do not perform approximate dominations that
happened so far”? Getting the best inspection paths
precisely is equivalent to optimal planning. Thus, we use
estimations and name such estimations potentially
achievable paths or PAPs.

Definition 3. Potentially achievable path. A potentially
achievable path (PAP) ~P to some vertex u2V is a pair ð~l, ~IÞ
such that ~l≥ 0 and SðuÞ4~I4IG . By a slight abuse of
notation, we extend the definitions ofl(�) and Sð�Þ such that
lð~PÞ ¼ ~land Sð~PÞ ¼ ~I .

It may seem that a PAP is simply a path but note (as the
name PAP suggests) that we do not require that there exists
any path P from vs to u such that lðPÞ ¼lð~PÞ and
SðPÞ ¼ Sð~PÞ. It merely states that such a path may exist.

We now use PAPs to define the notion of a path pair:

Definition 4. Path pair. Let P and ~P be a path and a PAP
from vs to some v2V such that lð~PÞ ≤lðPÞ and
Sð~PÞJSðPÞ. Their path pair is PP : ¼ ðP, ~PÞ and we call P
and ~P the achievable and potentially achievable paths of
PP, respectively.

Figure 3. Computing optimal inspection paths on graphs by
casting a graph-inspection problem (bottom) to a graph-search
problem (top). Gray layers correspond to the set of all vertices in
VS that share the same set of points inspected. Edges connecting
vertices in the same (different) layer are depicted in dashed
(dotted) lines, respectively. The start is (a,) and the goal set Vgoal

contains all vertices in the top layer. Notice that the optimal path
(blue) visits vertex a twice.

6 The International Journal of Robotics Research 0(0)

Let us define operations on PAPs and on PPs, visualized
in Figure 5. The first operation we consider is extending a
PAP ~Pu by an edge e = (u, v), denoted as ~Pu þ e. This can be
thought of as appending e to ~Pu, had it existed and thus
accounting for the lengthl(e) and additional coverage SðvÞ.
Formally, extending ~Pu þ e yields a PAP ~Pv such that
lð ~PuÞ ¼lð ~PvÞ þlðeÞ and Sð ~PuÞ ¼ Sð ~PvÞ [SðuÞ. Extend-
ing the path pair PPu ¼ ðPu, ~PuÞ by the edge e = (u, v)
(denoted as PPu+e) simply extends both Pu and ~Pu by e.
This yields the path pair PPv ¼ ðPv, ~PvÞ wherel(Pv) =l(Pu)
+l(e), SðPvÞ ¼ SðPuÞ [SðvÞ and ~Pv ¼ ~Pu þ e.

The second operation is subsuming a path pair by another
one which can be thought of as constructing a PAP that
dominates the PAPs of both path pairs. Formally, Let PP1 ¼
ðP1, ~P1Þ and PP2 ¼ ðP2, ~P2Þ be two path pairs such that
both connect the start vertex vs to some vertex u2V. The
path pair defined by PP1 subsuming PP2 is

PP1 Å PP2 : ¼ ðP1, ðmin
n
lð ~P1Þ,lð ~P2Þ

o
,Sð ~P1Þ

[Sð ~P2ÞÞÞ:

We now define the notion of bounding a path pair which
will be crucial for ensuring near-optimal solutions:

Definition 5. ε, p-bounded. A path pair PP : ¼ ðP, ~PÞ is
said to be ε, p-bounded for some ε ≥ 0 and p2(0,1] if P ε,
p-dominates ~P.

To compute a near-optimal inspection path (Alg. 1 and
Figure 6), we extend each path considered by our search
algorithm to be a path pair and use this additional data to
prune away approximately dominated paths. Similar to A*,
our algorithm uses two priority queues OPEN and CLOSED
to track the nodes considered by the search. It starts by
inserting the start vertex ðvs,SðvsÞÞ to the OPEN list to-
gether with the path pair PPs ¼ ðPs,PsÞ (here Ps is a path
containing only start vertex vs) (line 2).

Our algorithm proceeds in a similar fashion to A*—we pop
the most promising node n ¼ ðu, Iu,PPuÞ from OPEN (line
4) and move it to CLOSED (line 5). If the PAP of this node is
in the goal set Vgoal (line 6), we terminate the search and return
the achievable path of PPu (line 7). If not, we consider all
neighboring edges e of u in G and extend the node n (line 9).
This is akin to computing n’s neighbors in GS .

At this point, our algorithm deviates from the standard
A* algorithm. For each newly created node ðv, I v,PPvÞwe
check if there exists a node in CLOSED whose PAP
dominates ~Pv. If so, this node is discarded (lines 11–14). If
no such node exists in the CLOSED list, we check if there
exists a node in OPEN that may subsume it. If so, that node
is updated and this node is discarded (line 17–21). Finally,
we check if this node can subsume nodes that are in OPEN.
If so, such nodes are discarded and this node is updated.
(line 24–27).

We prove that, Alg. 1 returns a path that ε, p-dominates
an optimal inspection path on the roadmap (see Sec. 6).

5.3. Tightening approximation factors

Recall that our algorithm starts with approximation parameters
p0 and ε0. We endow our algorithm with a tightening factor
f2 (0,1], and at the i’th iteration we set our approximation
parameters as pi = pi�1 + f � (1� pi�1) and εi = εi�1 + f � (0�
εi�1). Aswewill see (Sec. 6), since lim

N →∞
pi= 1, lim

N →∞
εi= 0, the

tightening allows ourmethod to achieve asymptotic optimality.

Algorithm 1 Near-optimal inspection graph search
Input: (GS ; vs,Vgoal, ε, p)

1: CLOSED ← ø
2: OPEN←ðvs,SðvsÞ,PPsÞ

3: while OPEN ≠ ø do
4: ðu,Iu,PPuÞ← OPEN.extract_min()
5: CLOSED.insert ðu, Iu,PPuÞ
6: if ~Pu 2Vgoal then ⊳ ~Pu is the PAP of PPu

7: return Pu ⊳ Pu is the achievable path of PPu

8: for e = (u, v) 2 neighbors ðu,GÞ do
9: ðv, I v,PPvÞ← extend ððu, Iu,PPuÞ, eÞ
10: Valid = True
11: for ðv, I 0

v,PP
0

vÞ 2CLOSED do
12: if ~P

0

v dominates ~Pv then
13: Valid = False
14: break
15: if !valid then
16: continue
17: for ðv, I 0

v,PP
0

vÞ 2OPEN do
18: if PP

0

v ÅPPv is ε, p-bounded then
19: ðv, I 0

v,PP
0

vÞ←ðv, I 0

v,PP
0

v ÅPPvÞ
20: Valid = False
21: break
22: if !valid then
23: continue
24: for ðv, I 0

v,PP
0

vÞ 2OPEN do
25: if PPv Å PP

0

v is ε, p-bounded then
26: OPEN.remove ðv, I 0

v,PP
0

vÞ
27: ðv, I ,PPvÞ←ðv, I ,PPv Å PP

0

vÞ
28: OPEN ←ðv, I v,PPvÞ
29: return NULL

5.4. Implementation details

5.4.1. Lazy computation in graph inspection planning. We
run our search algorithm on G (Alg. 1) without checking if
its edges are collision-free or not (recall that only the edges
of T were explicitly checked for collision). Once a solution
is found, we start checking edges one by one until the entire
path was found to be collision-free or until one edge is found
to be in collision, in which case we remove it from the edge
set. This approach is common to speed up motion-planning
algorithms when edges are expensive to evaluate (Dellin
and Srinivasa 2016; Haghtalab et al., 2018).

5.4.2. Node extension in graph inspection planning. Any
optimal inspection path can be decomposed into a sequence
of vertices that improve the coverage of the path called

Fu et al. 7

milestones. It is straightforward to see that an optimal in-
spection path will (i) terminate at a milestone and (ii) connect
a pair of milestones via a shortest path in G. Following this
observation, instead of extending each path P from a vertex u
by all outgoing edges in G (Alg. 1, line 8), we run a Dijkstra-
like search from u and collect all first-met vertices that can be
milestones.

5.4.3. Heuristic computation in graph inspection
planning. Recall that A* orders nodes in the OPEN list
according to their computed cost-to-come added to a
heuristic estimate of their cost to reach the goal. The
heuristic function that we use for vertex ðu, I uÞ is computed
as follows: we run a Dijkstra search on G from u and
consider the vertices Vu encountered during the search. We

Figure 5. Depiction of operations on path pairs. (a) PP extended by an edge e = (u, v) with SðvÞ ¼ f2g. (b) PP1 subsuming PP2. Note that
P1 is the achievable path of PP1ÅPP2 thus only the potentially achievable path is explicitly marked.

Figure 6. Visualization of Alg. 1 initialized with ε = 2/3 and p = 1/2 (only the relevant parts of the inspection graph are depicted). (a,) with the
trivial PAP of length zero and no points inspected. (a) Two paths (red and blue) are extended from the start node to (b, {0}) and (c, {1}) with path
pairsPP1 andPP2, respectively (thePAPsof eachpath have the same length and coverage as the paths themselves). (b)Blue path extended to (d, {0})
withlðP1Þ ¼lð ~P1Þ ¼ 2 and SðP1Þ ¼ Sð ~P1Þ ¼ f0g. (c) Red path extended to (d, {1}) withlðP2Þ ¼lð ~P2Þ ¼ 3 and SðP2Þ ¼ Sð ~P2Þ ¼ f1g.
Here, PP1ÅPP2 ε,p-dominates PP2 and the red path is discarded and PAP1 is updated to have length two and coverage {0, 1} (d) Blue path
extended to vertex (e, {0, 2}). Here,lðP1Þ ¼lð ~P1Þ ¼ 3 andSðP1Þ ¼ f0; 2g, Sð ~P1Þ ¼ f0; 1; 2g. The algorithm terminateswith the path a� b�
d � e whose length is 3 and has coverage of {0, 2}. Notice that the path a � c � d � e (not computed) is optimal as its length is four and it has
complete coverage. The computed path is within the bounds ensured by the approximation factor p and ε.

Figure 4. Visualization of the notion of dominating paths by considering a path P from vs to some vertex u as a two-dimensional point
ðlðPÞ,SðPÞÞ. Here IG ¼ f0; 1; 2; 3g and P is depicted using the purple circle withl(P) =land SðPÞ ¼ f2; 3g. All paths from vs to u
that (a) are dominated by P (solid red), (b) are ε-dominated by P (solid blue), (c) are p-dominated by P for p = 60% (dashed red), (d) are ε,
p-dominated by P for ε > 0 and p = 60% (dashed blue).

8 The International Journal of Robotics Research 0(0)

terminate when ð[v2VuSðvÞÞ [Iu ¼ IG and use the
maximal distance between u to any node in Vu as our ad-
missible (Hart et al., 1968) heuristic function. We now show
why the heuristic is admissible. When we terminate with
ð[v2VuSðvÞÞ [Iu ¼ IG, denote the last vertex added to Vu

as vlast. Note that vlast is also the most distant (via roadmap
edges) vertex from u due to the nature of Dijkstra’s algorithm.
According to the termination condition, there exists a non-
empty set of POI I last that is covered by vlast but not covered
by any other vertices in Vu. Namely, I last � SðvlastÞ and
I last \ ð[v2Vu, v ≠ vlastSðvÞÞ ¼ . To achieve an inspection
coverage of IG, the minimum distance to travel is equal to or
greater than the distance between u and vlast because with any
shorter path, I last is not covered.

6. Theoretical guarantees

In this section, we provide theoretical properties showing that
IRIS is guaranteed to be asymptotically optimal, given that the
system and the environment satisfy several general assumptions.
For brevity, we only state the main definitions, lemmas, and
theorems and defer all proofs to Appendix A and Appendix B.
Recall that IRIS iteratively densifies the roadmap and runs a
near-optimal inspection graph search on the latest
roadmap. Thus, we begin (Thm. 1) by proving that our graph
inspection search algorithm (Alg. 1) returns a near-optimal
solution when compared to the optimal solution (available
for that specific roadmap). We then continue (Thm. 2) to show
that IRIS is asymptotically optimal when the approximation
parameters satisfy that lim

N →∞
εN = 0 and lim

N →∞
pN = 1, whereN is

the number of vertices in the roadmap. This is done by using the
notion of probablistic exhaustivity (Schmerling et al., 2015)
coupled together with the assumptions that (i) an optimal in-
spection trajectory is well behaved (Def. 8), (ii) an optimal
inspection trajectory weak δcl-clearance, and that (iii) the in-
spection problem is regular (Def. 10). It is worth noting that all
proofs are general enough to account for complex robotic
systems, including those having differential constraints. Having
said that, as we use a graph-based search method, we require a
method is required to compute valid motions (if such motions
exist) between two close-by configurations.

We start by proving that Alg. 1 is near-optimal.

Definition 6. Optimal inspection path on a roadmap. Let
ðG, IG,S,l, vsÞ be a graph inspection problem. An optimal
inspection path P* is a path on roadmap G, starting at vs,
and satisfies

lðP*Þ ¼ argminflðPÞjP is a path with SðPÞ ¼ IGg:

Where l*dl(P*) and S* : ¼ SðP*Þ ¼ IG, denote the
length and coverage of an optimal path, respectively.

Lemma 1. In Alg. 1 (near-optimal inspection graph
search), all path pairs in OPEN and CLOSED during the
search are ε, p-bounded.

Lemma2.Let P* ¼ fv0, v1,…, v
n*g be an optimal inspection

path and denote P*[i]d{v0,…, vi}, for i 2 [0, n*] as the path

composed of the first i waypoints of P*. During every iteration of
Alg. 1, there exists a path pair PPv ¼ ðPv, ~PvÞ in OPENand an
index i such that v = vi and ~Pv strictly dominates P*[i].Namely,
lð~PÞ ≤lðP*½i�Þ and ðP*½i�Þ4Sð~PÞ.

With Lemma 1 and 2, we can show that Alg. 1 returns a
near-optimal result.

Theorem 1. Near-optimal inspection graph search. Near-
optimal inspection graph search (Alg. 1) computes a path P
that ε, p-dominates an optimal inspection path P*. Namely,
l(P) ≤ (1 + ε) �l(P*) and jSðPÞj ≥ p � jSðP*Þj.

We now continue to prove that IRIS is asymptotically
optimal. To prove this, we show that an optimal inspection
path x* can be approximated by a sequence of configurations
sampled by IRIS, given certain conditions. Specifically, we
will need to show that as the number of iterations approaches
infinity, the following requirements hold: (i) the length of the
path induced by this sequence of samples converges as-
ymptotically to the length of x*, (ii) the coverage obtained by
this sequence of samples converges asymptotically to the
coverage of x*, and that (iii) our inspection graph search
algorithm finds such a sequence of samples. To do so, we rely
on the notion of probabilistic exhaustivity (Schmerling et al.,
2015). Roughly speaking, it is the notion that given a suf-
ficiently large set of uniformly sampled configurations, any
path can be traced arbitrarily well in the configuration space
by a path defined as a sequence of configurations.

Lemma 3. Probabilistic exhausitivity. Let x : ½0, T �→X free

be a dynamically feasible trajectory. Let QN be a set of N
points sampled independently and identically from the
uniform distribution on the collision-free spaceX free and set
VN ¼ fxð0Þg[QN .For a given N, set

rN ¼ κ � ðlogðNÞ=NÞ1=D:

Here, D is a constant capturing the dimension of the system
and κ is a commutable constant depending on the system
dynamics, N, D, and some tuning parameter η ≥ 0. Let ~AN be
the event that there exists a discrete sequence of con-
figurations P ¼ fqig

n
i¼14VN that (δ, r)-traces x for any δ

2 (0, 1) and r = rN. The probability that event ~AN doesn’t
happen, denoted by Pð~Ac

N Þ is asymptotically bounded by

P

�
~Ac

N

�
≤OðN�ηlog�

1
DNÞ:

As is defined above, η ≥ 0 is some tuning parameter.
In addition, we assume that x* is well-behaved. Roughly

speaking, this ensures that there are no singular points along
the trajectory where a POI can only be inspected from. This,
in turn, will allow us to ensure that trajectories that trace an
optimal inspection path cover the same set of POI.

Definition 7. Inspecting configuration region. Let i2I be a
point of interest (POI), the inspecting configuration region
of i, denoted as X inspðiÞ, is defined to be the union of all
configurations from which the POI can be inspected.
Namely,

Fu et al. 9

X inspðiÞ ¼
�
q2X free : i2SðqÞ

�
:

Similarly, the inspecting configuration region of I 0
4I is

defined as

X inspðI 0Þ ¼
�
q2X free : I04SðqÞ

�
:

Definition 8.Well-behaving of an inspection trajectory. Let
x : ½0, T �→X free be a feasible inspection trajectory. x is said
to be strongly ξ-well behaved if "i2SðxÞ, there exist at
least one point along x whose ξ-neighborhood is completely
within the inspecting configuration region of i. Namely,

"i2SðxÞ, ∃t2 ½0, T � s:t: BeðxðtÞ, ξÞ4X inspðiÞ:

Similarly, x is said to be weakly ξ-well behaved if
"i2SðxÞ=ðSðxð0ÞÞ[SðxðTÞÞÞ, there exists at least one
point along x whose ξ-neighborhood is completely within
the inspecting configuration region of i. Namely

"i2SðxÞ=ðSðxð0ÞÞ [SðxðTÞÞÞ,∃t2 ½0, T �
s:t: BeðxðtÞ, ξÞ4X inspðiÞ:

It is not hard to see, that any strongly well-behaved
trajectory can be shortened to a weakly well-behaved tra-
jectory without loosing coverage. Thus an optimal in-
spection trajectory can only be weakly well-behaved.

We further require the inspection-planning problem to be
regular. The notion of regularity is required because for a
weakly well-behaved optimal inspection trajectory
x* : ½0, T �→X free we need to take special care to cover the
POI inspected at x*(T). The notion of regularity will ensure
that there always exists a region near x*(T) that IRIS can
sample inside.

Definition 9.Regular boundary.A setX0
4X free is said to have

a regular boundary if there exists γ >0 such that"q2 ∂X , there
exists q0 2X with Beðq0, γÞ4X0

and q 2 ∂Be(q0, γ).

Definition 10. Regularity of an inspection-planning prob-
lem. Let P ¼ ðX , I ,S,l, qsÞ be an inspection-planning
problem and X free be the set of collision-free configura-
tions. P is said to be regular if "q2X free, X inspðSðqÞÞ has
a regular boundary.

Similar to many other analyses of sampling-based plan-
ning algorithms (see, e.g., Kavraki et al. (1996); Karaman and
Frazzoli (2011); Solovey et al. (2018)), we also assume that
an optimal trajectory to trace has clearance from X obs.

Definition 11. Strong/weak δcl-clearance. Let x : ½0, T �→X free

be a feasible trajectory. x has strong δcl -clearance if"t2 [0,T],
x(t) is in δcl -interior of X free (namely, x(t) is at least δcl away
from any point in X obs using the Euclidean distance). Fur-
thermore, x has weak δcl -clearance if there exists a sequence of
homotopic paths fxkgk2N that satisfies:

(i) lim
k→∞

xk = x.

(ii) x0 has strong δcl-clearance.

(iii) "k2[0,∞), xk is dynamically feasible and has strong
δk-clearance for some δk > 0, and lim

k→∞
δk = 0.

(iv) lim
k→∞

l(xk) =l(x).

We are finally ready to state our final theorem.

Theorem 2. IRIS asymptotic optimality. Let
P ¼ ðX , I ,S,l,qsÞ be a regular inspection-planning
problem and X free be the collision-free space. Assume
that the robot system satisfies the assumptions mentioned in
Schmerling et al. (2015) and Let x* : ½0, T �→X free be an
optimal feasible inspection trajectory such that

(i) x*(0) = qs,
(ii) x* has weak δcl-clearance for some δcl > 0,
(iii) x* is weakly ξ-well behaved for some ξ > 0.

Furthermore, letli and Si denote the arc length, and the
inspection coverage, respectively of the trajectory returned by
IRIS at the N’th iteration using approximation parameters εN
and pN, and a lower-bound connecting radius rN (as defined in
Lemma 4). If lim

N →∞
εN = 0 and lim

N →∞
pN = 1, we have that

lim
N →∞

PðlN > ð1þ ΔÞlðx*ÞÞ ¼ 0

for any Δ >0 and that

lim
N →∞

PðjSN j< jI*jÞ ¼ 0:

7. Results

We evaluated IRIS on three simulated scenarios: (1) a planar
manipulator inspecting the boundary of a square region
(Figure 7(a)), (2) an unmanned aerial vehicle (UAV) inspecting
the outer surface of a bridge (Figure 7(b)), and (3) aCRISP robot
inspecting the inner surface of a pleural cavity (Figure 7(c)). For
all experiments, we order path pairs in OPEN (Alg. 1 line 4)
according to the path pair with the minimal potentially
achievable path cost. All tests were run on a 3.4 GHz 8-core
Intel Xeon E5-1680 CPU with 64 GB of RAM.

7.1. Planar manipulator scenario

In this scenario, depicted in Figure 7(a), we have a 5-link planar
manipulator fixed at its base that is tasked with inspecting the
boundary of a rectangular 2D workspace, which is discretized
into 400 POI. The sensor is a camera attached to the tip of the
manipulator, aligning with the direction of the robot’s final
segment. When modeling the camera for inspection, we con-
sider a field of view (FOV) of 45° and an unbounded effective
inspecting distance.We start by evaluating IRIS forfixed p and ε
and then compare it with RRTOT using our approach for
dynamically reducing the approximation factors. For every set
of parameters, we ran 10 experiments for 1000 s and report the
average value together with the standard deviation.

This scenario serves as a simple example where we
compare the approximation algorithm for inspection planning
with optimal inspection planning (i.e., p = 1, ε = 0). When

10 The International Journal of Robotics Research 0(0)

p = 1, indicating we do not allow any approximation on in-
spection coverage, and we vary ε (Figure 8(a)), we can see that
even small approximation factors (e.g., ε = 0.5) allow to
dramatically increase the coverage obtained as each search
episode takes less time and more configurations can be added
to the RRT tree. While optimal inspection planning (using ε =
0) did not result in 80% coverage even after 1000 s, this was
achieved within one second for ε ≥ 1.0. This comes at the price
of slightly longer inspection paths. When ε = 0, indicating we
do not allow any approximation on path length, and we vary p
(Figure 8(b)), we get roughly the same coverage per time but at
the price of much longer paths for higher values of p.

Following the above discussion, when reaching high cov-
erage is the sole objective, one should use large initial values of
p0 and ε0. When we want initial solutions to also be short, one
should start with smaller approximation factors. We compared
IRIS with different initial approximation factors to RRTOT
(Bircher et al., 2017), see Figure 8(c). We can see that our
approach allows producing higher-quality paths than RRTOT.
For example, IRIS obtains more than a 264× speedup when
compared to RRTOT when producing the same quality of in-
spection planning for the case of roughly 85% coverage and
path length of 85.8 units. Final inspection paths obtained by
IRIS are both shorter and inspect larger portions of I .

7.2. Bridge inspection scenario

In this scenario, depicted in Figures 7(b) and (a) UAV
equipped with a camera inspects the surface of a bridge
structure. The bridge structure is obtained from a 3D mesh
(Elkassar 2008) and discretized into 3817 POI. The bridge

structure serves as both an inspection target and an obstacle
that may block movements and occlude sensing. And we do
not consider other environmental obstacles except for the
ground, whichmeans the UAV can only fly above the ground.

The UAV has a configuration space of SOð2Þ×R3. It first
can translate in 3D space, then can rotate around its vertical
axis, and finally, the camera can rotate around the pitch axis.
When modeling the camera for inspection, we consider a
FOV of 90° and an effective inspecting distance of 10 m.

We ran IRIS and RRTOT for this scenario 10 different
times for 10,000 s (Figure 9). IRIS obtains more than a 8×
speedup when compared to RRTOT when producing a
better quality of inspection planning for the case of roughly
57% coverage and path length of 230 units, which is only
68% of that of RRTOT.

7.3. Pleural effusion inspection scenario

The anatomical pleural effusion environment for this simu-
lation scenario was obtained from a Computed Tomography
(CT) scan of a real patient suffering from this condition, and a
fine discretization of the internal surface of the pleural cavity
is used as the set of POI containing 49506 points. We also use
the internal surface of the cavity as obstacles and prohibit the
robot from colliding with the pleural surface, lung, and chest
wall (except at tube entry points). Pleural effusion volumes
can be geometrically complex, as the way in which the lung
separates from the chest wall can be inconsistent. This results
in unseparated regions of the lung’s surface that can inhibit
movement and occlude the sensor from visualizing areas
further in the volume.

Figure 7. Simulation scenarios. (a) A 5-link planar manipulator (orange) inspects the boundary of a square region (blue) where
rectangular obstacles (red) may block the robot and occlude the sensor. The sensor’s field of view (FOV) is represented by the yellow
region. SðqÞ are the points on the boundary in the sensor’s unobstructed FOVand are shown in purple. (b) The bridge inspection scenario
involves a UAV (blue) inspecting the outer surface of a bridge, including the POI that are covered (green) and non-covered (orange) from
the current configuration. (c) The pleural effusion inspection scenario involves the CRISP robot (orange) inspecting the inner surface of
a pleural cavity, including the POI that are covered (green) and non-covered (blue) from the current robot configuration.

Fu et al. 11

Here we consider a CRISP robot with two tubes, where a
snare tube is grasping a camera tube in order to create a
parallel structure made of thin, flexible tubes. Each tube can
be independently rotated in three dimensions about its entry
point into the body, and independently translated into and
out of the cavity. The system has 8 degrees of freedom with
a configuration space of SOð3Þ2 ×R2, which enables the
parallel structure to move in a manner that enables obstacle

avoidance as well as precise control of the camera’s pose.
We model the camera with a 60-degree FOV and an un-
bounded effective inspecting distance.

We ran IRIS and RRTOT for this scenario 10 different
times for 10,000 s (Figure 10). Similar to the planar ma-
nipulator scenario, IRIS allows producing higher-quality
paths than RRTOT. For example, IRIS obtains more than a
79× speedup when compared to RRTOT when producing
the same quality of inspection planning for the case of
roughly 33% coverage and path length of 0.3 units.

8. Conclusion and future work

In this work, we presented IRIS, an algorithmic framework
for computing asymptotically optimal inspection plans. Our
key contribution is an algorithm to efficiently compute near-
optimal inspection plans on graphs. Interestingly, our
problem of graph-inspection planning lies in the intersection
between single and bi-criteria shortest path problems.
Clearly, we are computing a shortest path on the inspection
graph GS . However, en route, we compute an approximation
of the set of Pareto-optimal paths to every node in the
original graph G. Thus, we believe that our approach may be
useful for the general problem of bicriteria optimization.

Figure 8. Quality of inspection paths computed for the planar manipulator. The algorithm falls back to optimal inspection planning when
p = 1, ε = 0. (a) IRIS running with p = 1, f = 0 and varying values of ε. (b) IRIS running with ε = 0, f = 0 and varying values of p.
(c) Comparison of IRIS and RRTOT. IRIS running with p0 = 0.95, ε0 = 20.0, and f = 0.0005.

Figure 9. Comparing the quality of inspection paths computed for
the bridge inspection scenario. IRIS was run with p0 = 0.7,
ε0 = 5, and f = 0.0001.

Figure 10. Comparing the quality of inspection paths computed
for the pleural effusion scenario. IRIS was run with p0 = 0.8,
ε0 = 10, and f = 0.01.

Figure 11. Time decomposition of IRIS as a function of iteration
number.

12 The International Journal of Robotics Research 0(0)

We showed IRIS outperforms the prior state-of-the-art,
including in a medical application in which a surgical robot
inspects a tissue surface inside the body as part of a di-
agnostic procedure. However, the efficiency of IRIS can be
further improved. We now highlight several avenues where
such improvement could be obtained.

8.1. Dynamic updates in graph
inspection planning

IRIS reruns Alg. 1 every iteration which may be highly
inefficient as we would like to reuse information constructed
from previous search episodes. Indeed, the general case
where a graph undergoes a series of edge insertions and
edge deletions and we wish to update a shortest-path al-
gorithm is a well-studied problem referred to as the fully
dynamic single-source shortest-path problem (Frigioni
et al., 2000; Ramalingam and Reps 1996). Efficient algo-
rithms exist even when running an A*-like search (Koenig
et al., 2004). Thus, an immediate next step to improve the
efficiency of our algorithm is to adapt the aforementioned
algorithms to the case of near-optimal graph inspection
planning.

8.2. Balancing graph search and
lazy computation

Recall that we employ a lazy search paradigm when
computing near-optimal inspection plans on the inspection
graph (Sec. 5.4). This was done because edge evaluation is
computationally complex. However, as the number of iter-
ations increases, the search starts to dominate the overall
running time of our algorithm and not edge evaluation (see
Figure 11). Recently Mandalika et al. (2018, 2019) presented
an algorithm that balances edge evaluation and graph search
when edges are expensive to evaluate using the notion of lazy
look-ahead. Thus, we suggest using their method dynami-
cally varying the so-called lazy look-ahead—in the initial
stages of the algorithm, when the search is not a bottleneck,
employ a large look-ahead (which corresponds to performing
more search). As the algorithm progress, reduce the look-
ahead to account for the fact that edge evaluation is relatively
cheaper than graph search.

8.3. Efficient sampling of configurations in
RRT construction

Recall that in our RRT constructions we sample configu-
rations uniformly at random from X . Common im-
plementations of RRT typically employ a goal bias where
configurations from the goal are sampled with some
probability LaValle (2006). Similarly, we suggest biasing
sampling towards configurations that increase coverage.
Namely, to configurations q such that SðqÞ [IG ≠ . We
suspect that the goal bias should be dynamically changed—
when the inspection graph GS has low coverage the bias

should be high. As the overall coverage of GS increases, the
goal bias should be reduced to allow for shorter inspection
plans.

8.4. Employing multiple heuristics in graph
inspection planning

As the number of iterations increases, graph search dom-
inates the running time of our algorithm. Heuristics have
been shown to be an effective tool in speeding up search
algorithms and we suggest employing recent developments
from the search community to speed up this part of our
framework. One such development is using multiple heu-
ristics to guide the search in a systematic way (Aine et al.,
2016) that has shown to be an effective tool in robot
planning algorithms (Islam et al., 2018; Ranganeni et al.,
2018).

Roughly speaking, using multiple heuristics allows en-
coding domain knowledge without having to worry about the
heuristic functions being admissible. In our setting, we are
simultaneously reasoning about inspection coverage and plan
length in our graph inspection planning. Thus, it may be
beneficial to design one (or more) heuristics that account for
path length and one (or more) heuristics that account for path
coverage. Then we could apply a method similar to MHA*
(Aine et al., 2016) to combine the efforts of these heuristics.

8.5. Adaptively updating
approximation parameters

In our work, we used a simplistic approach to update the
approximation parameters. These may have a dramatic
effect on the quality of plans produced. We suggest further
inspecting how to update these parameters, possibly doing
this in a dynamic fashion according to information obtained
from previous search episodes.

Acknowledgments

The authors gratefully acknowledge Inbar Fried at the University of
North Carolina at Chapel Hill for his comments regarding the proofs.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect
to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: The
authors disclosed receipt of the following financial support for the
research, authorship, and/or publication of this article: This re-
search was supported in part by the National Science Foundation
(NSF) [grant numbers 2008475, 2038855]; the Israeli Ministry of
Science, Technology and Space (MOST) [grant numbers 3-16079,
3-17385]; and the United States-Israel Binational Science Foun-
dation (BSF) [grant numbers 2019703, 2021643].

Fu et al. 13

ORCID iDs

Mengyu Fu https://orcid.org/0000-0002-5237-1220
Ron Alterovitz https://orcid.org/0000-0002-4492-1384

Notes

1. Computing the shortest motion plan for a point robot moving
amidst polyhedral obstacles in 3D is NP-hard, and many
variants of the general motion planning problem are PSPACE-
hard. For further details, see Halperin et al. (2018).

2. More formally, an inspection plan P connecting two configu-
rations q, q0 2X is said to be Pareto optimal in our setting if any
other plan connecting q to q0 is either longer or does not inspect
a point visible to P.

References

Aine S, Swaminathan S, Narayanan V, et al. (2021) Multi-heuristic
A. Proceedings of the International Symposium on Combi-
natorial Search 5(1–3): 207–208.

Almadhoun R, Taha T, Seneviratne L, et al. (2016) A survey on
inspecting structures using robotic systems. International
Journal of Advanced Robotic Systems 13(6):
172988141666366.

Anderson PL, Mahoney AWandWebster RJ III (2017) Continuum
reconfigurable parallel robots for surgery: shape sensing and
state estimation with uncertainty. IEEE Robotics and Auto-
mation Letters 2(3): 1617–1624.

ASCE (2016) ASCE 2017 Infrastructure Report Card. https://
www.infrastructurereportcard.org/wp-content/uploads/2016/
10/2017-Infrastructure-Report-Card.pdf. Accessed: 2019-01-
01.

Bingham B, Foley B, Singh H, et al. (2010) Robotic tools for deep
water archaeology: surveying an ancient shipwreck with an
autonomous underwater vehicle. Journal of Field Robotics
27(6): 702–717.

Bircher A, Alexis K, Burri M, et al. (2015) Structural inspection
path planning via iterative viewpoint resampling with ap-
plication to aerial robotics In: IEEE Int. Conf. Robotics and
Automation (ICRA). IEEE, pp. 6423–6430.

Bircher A, Alexis K, Schwesinger U, et al. (2017) An incremental
sampling–based approach to inspection planning: the rap-
idly–exploring random tree of trees. Robotica 35(6):
1327–1340.

Bircher A, Kamel M, Alexis K, et al. (2016) Three-dimensional
coverage path planning via viewpoint resampling and tour
optimization for aerial robots. Autonomous Robots 40(6):
1059–1078.

Bogaerts B, Sels S, Vanlanduit S, et al. (2018) A gradient-based
inspection path optimization approach. IEEE Robotics and
Automation Letters 3(3): 2646–2653.

Bohlin R and Kavraki LE (2000) Path planning using lazy PRM In:
IEEE Int. Conf. Robotics and Automation (ICRA),
pp. 521–528.

Chen P and Nie Y (2013) Bicriterion shortest path problem with a
general nonadditive cost. Procedia - Social and Behavioral
Sciences 80: 553–575.

Choset HM, Hutchinson S, Lynch KM, et al. (2005) Principles of
Robot Motion: Theory, Algorithms, and Implementation. MIT
press.

Danner T and Kavraki LE (2000) Randomized planning for short
inspection paths IEEE Int. Conf. Robotics and Automation
(ICRA), pp. 971–976.

Dellin CM and Srinivasa SS (2016) A unifying formalism for
shortest path problems with expensive edge evaluations via
lazy best-first search over paths with edge selectors In: Int.
Conf. Automated Planning and Scheduling (ICAPS),
pp. 459–467.

Dijkstra EW (1959) A note on two problems in connexion with
graphs. Numerische Mathematik 1(1): 269–271.

Edelkamp S, Pomarlan M and Plaku E (2017) Multiregion in-
spection by combining clustered traveling salesman tours
with sampling-based motion planning. IEEE Robotics and
Automation Letters 2(2): 428–435.

Ehrgott M and Gandibleux X (2000) A survey and annotated
bibliography of multiobjective combinatorial optimization.
OR Spectrum 22(4): 425–460.

Elkassar (2008) TurboSquid. https://www.turbosquid.com/3d-
models/bridge-max-free/424181. Accessed: 2019-10-01.

Englot B and Hover FS (2012) Sampling-based coverage path
planning for inspection of complex structures In: Int.
Conf. Automated Planning and Scheduling (ICAPS),
pp. 29–37.

Englot BJ and Hover FS (2011) Planning complex inspection tasks
using redundant roadmaps In: Int. Symp. Robotics Research
(ISRR), pp. 327–343.

Frigioni D, Marchetti-Spaccamela A and Nanni U (2000) Fully
dynamic algorithms for maintaining shortest paths trees.
Journal of Algorithms 34(2): 251–281.

Fu M, Kuntz A, Salzman O, et al. (2019) Toward asymptotically-
optimal inspection planning via efficient near-optimal graph
search In: Robotics: Science and Systems (RSS). Freiburgim
Breisgau, Germany. DOI: 10.15607/RSS.2019.XV.057.

Fu M, Salzman O and Alterovitz R (2021) Computationally-
efficient roadmap-based inspection planning via incremen-
tal lazy search In: IEEE Int. Conf. Robotics and Automation
(ICRA). IEEE, pp. 7449–7456.

Galceran E and Carreras M (2013) A survey on coverage path
planning for robotics. Robotics and Autonomous Systems
61(12): 1258–1276.

Gracias N, Ridao P, Garcia R, et al. (2013) Mapping the moon:
using a lightweight auv to survey the site of the 17th century
ship ‘la lune In: OCEANS-Bergen, 2013 MTS. IEEE,
pp. 1–8.

Haghtalab N, Mackenzie S, Procaccia AD, et al. (2018) The
provable virtue of laziness in motion planning In: Int. Conf.
Automated Planning and Scheduling (ICAPS), pp. 106–113.

Halperin D, Salzman O and Sharir M (2018) Algorithmic motion
planning In: Handbook of Discrete and Computational Ge-
ometry. Third Edition. CRC Press LLC, pp. 1311–1342.

Hart PE, Nilsson NJ and Raphael B (1968) A formal basis for the
heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics 4(2):
100–107.

14 The International Journal of Robotics Research 0(0)

https://orcid.org/0000-0002-5237-1220
https://orcid.org/0000-0002-5237-1220
https://orcid.org/0000-0002-4492-1384
https://orcid.org/0000-0002-4492-1384
https://www.infrastructurereportcard.org/wp-content/uploads/2016/10/2017-Infrastructure-Report-Card.pdf
https://www.infrastructurereportcard.org/wp-content/uploads/2016/10/2017-Infrastructure-Report-Card.pdf
https://www.infrastructurereportcard.org/wp-content/uploads/2016/10/2017-Infrastructure-Report-Card.pdf
https://www.turbosquid.com/3d-models/bridge-max-free/424181
https://www.turbosquid.com/3d-models/bridge-max-free/424181
https://doi.org/10.15607/RSS.2019.XV.057

Hauser K (2015) Lazy collision checking in asymptotically-
optimal motion planning In: IEEE Int. Conf. Robotics and
Automation (ICRA), pp. 2951–2957.

Hernández C, Yeoh W, Baier JA, et al. (2023) Simple and efficient
bi-objective search algorithms via fast dominance checks.
Artificial Intelligence 314: 103807.

Islam F, Salzman O and Likhachev M (2018) Online, interactive
user guidance for high-dimensional, constrained motion
planning In: Int. Joint Conf. on Artificial Intelligence (IJCAI),
pp. 4921–4928.

Johnson-Roberson M, Pizarro O, Williams SB, et al. (2010)
Generation and visualization of large-scale three-dimensional
reconstructions from underwater robotic surveys. Journal of
Field Robotics 27(1): 21–51.

Kafka P, Faigl J and Váňa P (2016) Random inspection tree al-
gorithm in visual inspection with a realistic sensing model
and differential constraints IEEE Int. Conf. Robotics and
Automation (ICRA), pp. 2782–2787.

Karaman S and Frazzoli E (2011) Sampling-based algorithms for
optimal motion planning. The International Journal of Ro-
botics Research 30(7): 846–894.

Kavraki LE, Svestka P, Latombe JC, et al. (1996) Probabilistic
roadmaps for path planning in high dimensional configuration
spaces. IEEE Transactions on Robotics and Automation
12(4): 566–580.

Koenig S, Likhachev M and Furcy D (2004) Lifelong planning A.
Artificial Intelligence 155(1–2): 93–146.

Kuffner JJ and LaValle SM (2000) RRT-connect: an efficient
approach to single-query path planning. IEEE Int. Conf.
Robotics and Automation (ICRA) 2: 995–1001.

Kuntz A, Bowen C, Baykal C, et al. (2018) Kinematic design
optimization of a parallel surgical robot to maximize ana-
tomical visibility via motion planning In: IEEE Int. Conf.
Robotics and Automation (ICRA), pp. 926–933.

Latombe JC (1991) Robot Motion Planning. Boston, MA: Kluwer.
LaValle SM (2006) Planning Algorithms. Cambridge, U.K.:

Cambridge University Press.
LaValle SM and Kuffner JJ (2001) Randomized kinodynamic

planning. The International Journal of Robotics Research
20(5): 378–400.

Li Y, Bi X, Zhao J, et al. (2016) Simultaneous hepatic resection
benefits patients with synchronous colorectal cancer liver
metastases. Int. J. Robotics Research (IJRR) 28(5): 528–535.

Likhachev M, Gordon GJ and Thrun S (2003) Ara*: Anytime a*
with provable bounds on sub-optimality. Advances in Neural
Information Processing Systems 16.

Lynch KM and Park FC (2017) Modern Robotics: Mechanics,
Planning, and Control. Cambridge University Press.

Mahoney AW, Anderson PL, Swaney PJ, et al. (2016) Re-
configurable parallel continuum robots for incisionless sur-
gery In: IEEE/RSJ Int. Conf. Intelligent Robots and Systems
(IROS), pp. 4330–4336.

Mandalika A, Choudhury S, Salzman O, et al. (2021) Generalized
lazy search for robot motion planning: interleaving search and
edge evaluation via event-based toggles. Proceedings of the
International Conference on Automated Planning and
Scheduling 29: 745–753.

Mandalika A, Salzman O and Srinivasa S (2018) Lazy receding
horizon A* for efficient path planning in graphs with
expensive-to-evaluate edges In: Int. Conf. Automated Plan-
ning and Scheduling (ICAPS), pp. 476–484.

Marble JD and Bekris KE (2011) Asymptotically near-optimal is
good enough for motion planning In: Int. Symp. Robotics
Research (ISRR), pp. 419–436.

Niyaz S, Kuntz A, Salzman O, et al. (2018) Following surgical
trajectories with concentric tube robots via nearest-neighbor
graphs In: Int. Symp. Experimental Robotics (ISER).

Papadopoulos G, Kurniawati H and Patrikalakis NM (2013) As-
ymptotically optimal inspection planning using systems with
differential constraints In: IEEE Int. Conf. Robotics and
Automation (ICRA). IEEE, pp. 4126–4133.

Pardalos PM,Migdalas A and Pitsoulis L (2008) Pareto optimality,
game theory and equilibria. Springer Science and Business
Media, volume 17.

Pohl I (1970) Heuristic search viewed as path finding in a graph.
Artificial Intelligence 1(3–4): 193–204.

Raffaeli R, Mengoni M, Germani M, et al. (2013) Off-line view
planning for the inspection of mechanical parts. International
Journal on Interactive Design and Manufacturing (IJIDeM)
7(1): 1–12.

Ramalingam G and Reps T (1996) On the computational com-
plexity of dynamic graph problems. Theoretical Computer
Science 158(1&2): 233–277.

Ranganeni V, Salzman O and Likhachev M (2018) Effective
footstep planning for humanoids using homotopy-class
guidance In: Int. Conf. Automated Planning and Schedul-
ing (ICAPS), pp. 500–508.

Reinhardt LB and Pisinger D (2011) Multi-objective and multi-
constrained non-additive shortest path problems. Computers
& Operations Research 38(3): 605–616.

Richter S, Thayer JT and Ruml W (2010) The joy of forgetting:
Faster anytime search via restarting In: Int. Conf. Automated
Planning and Scheduling (ICAPS).

Salzman O and Halperin D (2015) Asymptotically-optimal motion
planning using lower bounds on cost In: IEEE Int. Conf.
Robotics and Automation (ICRA), pp. 4167–4172.

Salzman O and Halperin D (2016) Asymptotically near-optimal
RRT for fast, high-quality motion planning. IEEE Transac-
tions on Robotics 32(3): 473–483.

Salzman O, Hou B and Srinivasa S (2017) Efficient motion
planning for problems lacking optimal substructure In: Int.
Conf. Automated Planning and Scheduling (ICAPS),
pp. 531–539.

Schmerling E, Janson L and Pavone M (2015) Optimal sampling-
based motion planning under differential constraints: The
driftless case In: IEEE Int. Conf. Robotics and Automation
(ICRA), pp. 2368–2375.

Solovey K, Salzman O and Halperin D (2018) New perspective on
sampling-based motion planning via random geometric
graphs. The International Journal of Robotics Research
37(10): 1117–1133.

Tivey MA, Bradley A, Yoerger D, et al. (1997) Autonomous
underwater vehicle maps seafloor. Eos, Transactions Amer-
ican Geophysical Union 78(22): 229–230.

Fu et al. 15

Tsaggouris G and Zaroliagis CD (2004) Non-additive shortest
paths In: European Symposium on Algorithms (ESA),
pp. 822–834.

Tsaggouris G and Zaroliagis CD (2009) Multiobjective optimi-
zation: improved FPTAS for shortest paths and non-linear
objectives with applications. Theory of Computing Systems
45(1): 162–186.

van den Berg J, Shah R, Huang A, et al. (2011) Anytime non-
parametric a In: AAAI Conf. Artificial Intelligence.

Zhang H, Salzman O, Kumar TKS, et al. (2022) Anytime ap-
proximate bi-objective search In: Int. Symp. Combinatorial
Search (SOCS), pp. 199–207.

Appendix

Appendix A. Near-optimal inspection
graph search

Definition 1. Optimal inspection path on a roadmap. Let
ðG, IG,S,l, vsÞ be a graph inspection problem. An optimal
inspection path P* is a path on roadmap G, starting at vs,
and satisfies

lðP*Þ ¼ argminflðPÞjP is a path with SðPÞ ¼ IGg:

Denote the length and coverage of an optimal path as
l*dl(P*) and S* : ¼ SðP*Þ ¼ IG, respectively.

Lemma 1. In near-optimal inspection graph search (Alg.
1), all path pairs in OPEN and CLOSE during the search
are ε, p-bounded.

Proof. Recall that the first path pair (line 2) is PPs ¼
ðPs,PsÞ (here Ps is a path containing only start vertex vs).
Namely, the potentially achievable path is identical to the
achievable path of PPs and the path pair is trivially ε,
p-bounded.

We now show that the set of ε, p-bounded path pairs are
closed under extending and subsuming operations proving
the Lemma.

Closure under subsuming operation (line 18-21, 25-
27): This holds trivially since subsuming only occurs after
checking that the resultant path pair will be ε, p-bounded
(line 18 and 25).

Closure under extending operation (line 9): Let PPu

be an ε, p-bounded path pair extended by edge e = (u, v) to
obtain the path pair PPv (line 9). Let us consider both the
length and coverage of PPv.

By definition of the extending operation we have that (i)
l(Pv) =l(Pu) +l(e) and (ii)lð ~PvÞ ¼lð ~PuÞ þlðeÞ. Thus:

lðPvÞ ¼lðPuÞ þlðeÞ
≤ð1þ εÞ �l

�
~Pu

�
þlðeÞ

≤ð1þ εÞ �
�
l
�
~Pu

�
þlðeÞ

�

¼ ð1þ εÞ �l
�
~Pv

�
�

Here, the first and last equalities follow from the definition
of the extend operator, the first inequality follows from the
fact that PPu is ε, p-bounded.

Moving to the coverage of the resultant path pair, by
definition of the extend operator we have that (i) SðPvÞ ¼
SðPuÞ [SðvÞ and (ii) Sð ~PvÞ ¼ Sð ~PuÞ [SðvÞ. Thus:

jSðPvÞj ¼ jSðPuÞ [SðvÞj
¼ jSðPuÞj þ

���SðvÞ \ SðPuÞ
���

≥ jSðPuÞj þ
���SðvÞ \ SðPuÞ \ S

�
~Pu

����
≥ p �

���SðPuÞ [S
�
~Pu

����þ
���SðvÞ \ SðPuÞ \ S

�
~Pu

����
≥ p �

����SðPuÞ [S
�
~Pu

����þ
���SðvÞ \ SðPuÞ \ S

�
~Pu

����
�

¼ p �
���SðPvÞ [S

�
~Pv

����:
Here SðPÞ : ¼ IG∖SðPÞ, the first and last equalities follow
from the definition of the extend operation, the second
inequality follows from the fact that PPu is ε, p-bounded.

Thus, an ε, p-bounded PP will remain ε, p-bounded after
the extending operation. ■

Lemma 2. Let P* ¼ fv0, v1,…, v
n*g be an optimal

inspection path.‡ Denote P*[i]d{v0, …, vi}, for i 2 [0,
n*] as the path composed of the first i waypoints of P*.
During every iteration of Alg 1, there exists a path pair
PPv ¼ ðPv, ~PvÞ in the open list and an index i such that v =
vi and s ~Pv trictly dominates P*[i]. Namely, an
lð~PÞ ≤lðP*½i�Þ d.

Proof. We will prove a slightly stronger claim showing
that at every iteration of Alg 1 there exists a path pair PPv ¼
ðPv, ~PvÞ in the open list such that the following two
properties hold:

P1 There exists an index i such that v = vi and ~Pv strictly
dominates P*[i].

P2 There is no index j > i such that there is another path pair
PPu ¼ ðPu, ~PuÞ in either the open or the closed list where
u = vj and ~Pu strictly dominates P*[j].

Property P1. is exactly what we need to prove for Lemma
2 while property P2 simplifies the proof. The proof will be
by induction on the iterations of Alg. 1.

Induction base: In line 2, the open set is initialized with
the path pair PPs ¼ ðPs,PsÞ. Ps trivially dominates P*[0]
(property P1). Furthermore, there is no path in the closed list
so property P2 holds trivially.

Induction step: Assume that at iteration i, there exists
some index ni 2 [0, n*] and some path pair
PPni ¼ ðPni, ~PniÞ such that ~Pni dominates P*[ni]. Note that
following property P2, there is no other path pair PPu ¼
ðPu, ~PuÞ in either the open or the closed list and an index
nj > ni such that u ¼ vnj and ~Pu strictly dominates P*[nj].
There are two cases to consider—either PPni was popped
from the open list or not.

16 The International Journal of Robotics Research 0(0)

C1 First, we consider the case where PPniwas popped from
the open list. Consider the set Vnbr of neighbors of vni that
lie on P*. Namely,

Vnbr ¼ fvniþkjðvni, vniþkÞ 2 E and k ≥ 1g:

Note that Vnbr is not empty as eiþ1 ¼ ðvni, vniþ1Þ 2 E. For
each vertex vniþk 2Vnbr, denote PPniþk ¼ ðPniþk, ~PniþkÞ the
path pair that will be generated after extending the edge
ðvni, vniþkÞ(line 9). Let k* be the maximal index such that (i)
vniþk* 2Vnbr and (ii) Pni+k* strictly dominates P*[ni + k*].
Note that k* exists since Pni+1strictly dominates P*[ni + 1]
(this is easily verified using the induction hypothesis).
Assume that PPniþk* was the first path pair that was
generated§ (line 8) and that the induction hypothesis holds
prior to this event. It is straightforward to see that both
properties hold for PPniþk*:
Now, we need to consider the following sub-cases:

C1.1 Pniþk* is strictly dominated by some path P
0

niþk* that

is part of the path pair PP
0

niþk* ¼ ðP0

niþk* ,
~P

0

niþk*Þ in the

closed list (line 12). Note that ~P
0

niþk* strictly dominates

P*[ni + k*] and recall that ~Pniþk* strictly dominates

P*[ni + k*]. Thus, ~P
0

niþk* strictly dominates P*[ni + k*]

in contradiction to property P2 meaning that this

cannot occur.
C1.2 PPniþk* is subsumed by some other path pair PPopen ¼

ðPopen, ~PopenÞ in the open list (lines 17-21). The resulting
path pair PPres from this subsuming operation
has lð~PresÞ ¼ minflð~Pniþk*Þ,lð~PopenÞg ≤lð~Pniþk*Þ and

Sð~PresÞ ¼ Sð~Pniþk*Þ[Sð~PopenÞJSð~Pniþk*Þ. Thus, as ~Pres

strictly dominates ~Pniþk* it also strictly dominates P*[ni +
k*]. This, in turn, implies that both properties hold.

C1.3 PPniþk* is subsuming some other path in the open list
(lines 24-27). Similar toC1.2, the resulting path pair from
subsuming operation has potentially achievable path that
strictly dominates ~Pniþk*, thus strictly dominates P*[ni +
k*]. Again, this implies that both properties hold.

C1.4 PPniþk* is inserted into the open list without being
subsumed or subsuming any other path pair. Here the
induction hypothesis trivially holds.

We now need to consider all other path pairs generated
throughout. However, non can result in a path pair that
subsumes PPniþk* or is subsumed by PPniþk* meaning that
the induction hypothesis still holds.

C2 Now consider the case that PPni was not popped from
the priority queue. Some other path pair was popped from
the priority and extended and pushed into the closed list.
Out of all newly created path pairs (line 9) let PPnj be the
one for which property P1 holds and for which the index
nj is maximal. If no such path pair exists then the in-
duction hypothesis continues to hold. Again, we will
consider several sub-cases.

C2.1 If nj < ni, then both property P1 and P2 still hold for PPni.
C2.2 If nj = ni

¶, then either (i) PPni was subsumed by PPnj, (ii)
PPnj was subsumed by PPni or (iii) no path pair was sub-
sumed. It is straightforward to see that in all cases both
propertyP1 andP2 still hold for the newly created path pair in
cases (i) and (ii) or for both path pairs PPni and PPnj on case
(iii).

C2.3 If nj > ni, then both property P1 and P2 hold for
PPnj.

Similar to C1, we need to consider all other path pairs
generated throughout. However, non can result in a path pair
that subsumes PPnj or is subsumed by PPnj meaning that the
induction hypothesis still holds.

■
Note: Lemma 2 and its proof were stated for the

optimal inspection path P*. However, the proof holds
for any path P.

We can order path pairs in the open list (line 4) either
according to (i) the path pair with the minimal achievable
path cost or (ii) the path pair with the minimal potentially
achievable path cost. We now show that if either method is
used, the path returned by the algorithm (line 7) ε,
p-dominates an optimal inspection path P*.
Theorem 1. Near-optimal inspection graph search. Near-
optimal inspection graph search (Alg. 1) computes a path P
that ε, p-dominates an optimal inspection path P*. Namely,
l(P) ≤ (1 + ε) �l* and jSðPÞj ≥ p � jS*j.

Proof. When Alg. 1 terminates (line 6-7), we have that
Sð ~PuÞ ¼ IG ¼ S*. According to Lemma 1, PPu is ε,
p-bounded, thuslðPuÞ ≤ ð1þ εÞ �lð ~PuÞ and jSðPuÞj ≥ p �
jSðPuÞ[Sð ~PuÞj ¼ p � jS*j.

According to Lemma 2, for an optimal inspection path P*
there always exists a path pair in the open set and an index i such
that ~P dominates P*[i]. If the terminating PPu ¼ ðPu, ~PuÞ (on
line 6-7) happens to be such a path pair, it is straightforward that
lðPuÞ ≤ ð1þ εÞ �lð~PuÞ ≤ ð1þ εÞ �lðP*½i�Þ ≤ ð1þ εÞ �l*.
Otherwise, such a path pair PP

0 ¼ ðP0
, ~P

0
Þ is still in the

open set.
When using the achievable cost to order the open list, we

have that
lðPuÞ ≤lðP0Þ

≤ð1þ εÞ �l
�
~P
0
�

≤ð1þ εÞ �lðP*½i�Þ

≤ð1þ εÞ �l*:

When using potentially achievable costs to order the
open list, we have

lðPuÞ ≤ ð1þ εÞ �l
�
~Pu

�

≤ð1þ εÞ �l
�
~P
0
�

≤ð1þ εÞ �lðP*½i�Þ

≤ð1þ εÞ �l*: ■

Fu et al. 17

Appendix B. Asymptotically optimal
inspection planning

To prove that IRIS is asymptotically optimal, we will show
that the optimal inspection path x* can be approximated by a
sequence of configurations sampled by our algorithm. Here, we
will need to show that as the number of iterations approaches
infinity, the following requirements hold: (i) the length of the path
induced by this sequence of samples converges asymptotically to
the length of x*, (ii) the coverage obtained by this sequence of
samples converges asymptotically to the coverage of x* and that
(iii) our graph-inspection algorithm finds such a sequence of
samples.

To do so, we rely on the notion of probabilistic exhaustivity
(Schmerling et al. 2015). Roughly speaking, it is the notion
that given a sufficiently large set of uniformly sampled con-
figurations, any path can be traced arbitrarily well in the
configuration space by a path defined as a sequence of con-
figurations. The original definition of tracing (to be formalized
shortly) was used in the context of path cost and, as we will
see, is insufficient for our purposes. Thus, we start in Sec. A in
extending the definition of tracing and showing that proba-
bilistic exhaustivity still holds for the extended version. This
lays the groundwork to show that (i) and (ii) hold.

We then continue in Sec. B to formally define the well-
behaving of an inspection trajectory. Together with the notion of
tracing, well-behaving lays the groundwork to show that (ii)
holds. Roughly speaking, this will ensure that there are no
singular points along a trajectory where a POI can only be
inspected from. This, in turn, will allow us to ensure that tra-
jectories that trace an optimal inspection path cover the same set
of POI.

Finally, in Sec. C, we come to the conclusion that IRIS is
asymptotically optimal.

A Probabilistic exhaustivity

In order for our proof to be applicable to general systems
with differential constraints, we need to introduce several
notations. These will be used to prove the notion of
probabilistic exhaustivity (Schmerling et al. 2015) for our
setting. We start by defining (following (Schmerling et al.
2015, Sec. IV)) the arc length of a path and sub-
Riemmanian distances.

Definition 2. Trajectory arc length. Let x : ½0, T �→X be a
continuous trajectory, the arc length of x is defined as

lðxÞ : ¼
Z T

0

k _xðtÞ
��dt:

Here, k _xðtÞk ¼
ffi
h _xðtÞ, _xðtÞi

p
is the squared root of the

standard Euclidean inner product. See Figure 1.

Definition 3. Sub-Riemmanian distance. Let q1,q2 2X be
two configurations, the sub-Riemmanian distance between
them is defined as

dsrðq1,q2Þ : ¼ inf
x
lðxÞ:

Namely, it is the length of the shortest dynamically feasible
trajectoryk x(t) k connecting q1 and q2. See Figure 2.

Given the above definitions, we define the Euclidean ball
on X as

Beðx, εÞ ¼ fy2X : kx� yk ≤ εg;

and the sub-Riemannian ball on X as

Bðx, εÞ ¼ fy2X : dsrðx, yÞ ≤ εg:

Note that by definition it holds that "x, y kx � yk ≤ dsr(x, y)
and "x, ε B(x, ε) 4 Be(x, ε). See Figure 3.

The result of our algorithm, as is common in sampling-
based methods, is a trajectory that is implicitly defined by a
discrete sequence of configurations (a.k.a. waypoints). The
following definition formalizes the continuous path asso-
ciated with a discrete sequence of waypoints.

Definition 4.Associated optimal trajectory.Let P ¼ fqig
n
i¼14X

be a discrete sequence of configurations. The associ-
ated optimal trajectory of P, denoted by πP : ½0, S�→X,
is (i) dynamically feasible and (ii) sequentially connects
the waypoints q1,…,qn such that each connection is locally
optimal. Namely, it provides the shortest connection length
l(πP(qi, qi+1)) = dsr(qi, qi+1). See Figure 4.

A key notion used in proving probabilistic exhaustivity is
tracing (to be formally defined shortly). Roughly speaking,
a given path x is said to be traced by a sequence of points P if
they are close to x and the length of πP, the path associated
with P, is close to the length of the given path. This

Figure 1. Arc length of a trajectory.

Figure 2. Distances between two configurations. Here x0(t), …,
x3(t) are all dynamically feasible trajectories, and x3(t) is a
trajectory with the shortest arc length, among all dynamically
feasible trajectories connecting q1 and q2. So the sub-Riemmanian
distance dsr(q1, q2) is the arc length of x3(t). The Euclidean
distance kq1 � q2k is the length of the green dotted line.

18 The International Journal of Robotics Research 0(0)

corresponds to ensuring a one-way Hausdorff distance
between πP and x ((iii) in Definition 5). In the original
definition of (δ, r)-tracing, (see (Schmerling et al. 2015,
Section IV)), requiring only one-way Hausdorff was suf-
ficient as the proof was only concerned with path length
(and not coverage). This is because if πP “shortcuts” the
original path, the path length is only reduced. However, in
our setting, this may result in points covered by x not being
covered by πP. Thus, we add an additional requirement that
all points along the path x are close to a point in P which,
roughly speaking, corresponds to requiring the two-way
Hausdorff distance ((iii) and (iv) in Definition 5).

Definition 5. (δ, r)-tracing. Let x : ½0, T �→X be a dy-
namically feasible trajectory, P ¼ fqig

n
i¼14X be a discrete

sequence of configurations and πP be the associated optimal
trajectory of P. P is said to (δ, r) � trace x if:

(i) dsrðqi,qiþ1Þi¼1,…, n�1 ≤ r,
(ii) the arc length of πP is bounded byl(πP) ≤ (1 + δ) �l(x),
(iii) any point along the path πP is at most r-distance

away from some point along the path x. Namely,
sups2½0, S� inf

t2½0, T �
dsrðπPðsÞ, xðtÞÞ ≤ r.

(iv) any point along the path x is at most r-distance
away from some point in P. Namely,
supt2½0, T � inf

i2½1,…, n�
dsrðqi, xðtÞÞ ≤ r:

See Figure 5.

To use the extended (and slightly more restrictive)
definition of tracing, we introduce the notion of an (r, k)-
bounded trajectory. This notion formally defines to what
extent a path can change (by limiting the curvature of a path)
in a local neighborhood. This, in turn, will be used to inform
us how many samples are required to trace a given path in
order to prove probabilistic exhaustivity under our new
definition of tracing.

Definition 6. (rcurv, k)-bounding. Let x : ½0, T �→X be a
dynamically feasible trajectory, for k > 1, x is said to be
(rcurv, k)-bounded if "r2 ð0, rcurv�, we have

lðxðt1, t2ÞÞ ≤ k � dsrðxðt1Þ, xðt2ÞÞ,"0 ≤ t1 < T ,
t2 ¼ minðft2 ðt1,TÞ : dsrðxðt1Þ, xðt2ÞÞ ≥ rg[fTgÞ:

Here, x(t1, t2) is the curve segment on x between x(t1) and
x(t2). See Figure 6.

We now prove that when the target trajectory is not
pathological ðk _xðtÞk<∞Þ, then for any constant k > 1, we
can always find a value r such that the trajectory is (r, k)-

Figure 3. One possible example showing a sub-Riemannian ball
and a Euclidean ball with the same center and radius.

Figure 4. The associated optimal trajectory πP of a discrete
sequence of configurations P. Each segment connecting
subsequent configurations is optimal. Namely, its length equals
the sub-Riemannian distance between two configurations.

Figure 5. P (δ, r)-traces x. (a) The trajectory is dense enough,
namely sequentially nearby configurations are within r sub-
Riemaniian distance to another. (b) The arc length of the
associated optimal trajectory is bounded. (c) πP is close enough to
x, in other words any point along πP is at most r-distance away
from some point along x. (d) x is close enough to P, in other
words any point along x is at most r-distance away from some
point in P.

Fu et al. 19

bounded. Intuitively, this will allow us to argue that when
we sample along a target trajectory at small-enough inter-
vals (defined by r), the length of the curve connecting two
nearby sampled points is not too long compared to the sub-
Riemmanian distance between them.

Lemma 3. Let x : ½0, T �→X be a dynamically feasible
trajectory and _xðtÞ is bounded, namely, "t2 ½0, T �,
k _xðtÞk 2 ½0, dxmax�. For every constant k > 1, there exists
some radius r = rcurv(k, x) > 0 such that x is (r, k)-bounded.
See Figure 7.

Proof. According to Definition 2, we have that

lðxðt1, t1 þ ΔtÞÞ ¼
Z t1þΔt

t1

k _xðtÞkdt:

For certain t, if k _xðtÞk ¼ 0, it is straightforward that
d(l(x)) = 0. When 0 < k _xðtÞk ≤ dxmax, take derivative for t on
both sides

dðlðxÞÞ
dt

¼ k _xðtÞk0dðlðxÞÞ
dt

¼ kdxk
dt

0dðlðxÞÞ ¼ kdxk,
which can be written in another form as

lim
Δt→ 0

ðlðxð0, t1 þ ΔtÞÞ �lðxð0, t1ÞÞÞ
¼ lim

Δt→ 0
lðxðt1, t1 þ ΔtÞÞ

¼ lim
Δt→ 0

kxðt1 þ ΔtÞ � xðt1Þk
≤ lim
Δt→ 0

dsrðxðt1Þ, xðt1 þ ΔtÞÞ
< lim

Δt→ 0
k � dsrðxðt1Þ, xðt1 þ ΔtÞÞ

lim
Δt→ 0

lðxðt1, t1 þ ΔtÞÞ
dsrðxðt1Þ, xðt1 þ ΔtÞÞ ¼ k0ðt1Þ ≤ 1 < k

According to the definition of limit, for some δ > 0, there
always exists ξ > 0 such that when Δt� 0 < ξ,l(x(t, t + Δt))/
dsr(x(t), x(t + Δt))� k0(t) < δ. Then we could take δ = k� 1,
then with corresponding ξ, take r = min{dsr(x(t), x(t + ξ)),
t 2 [0, T � ξ]} would guarantee that x is (r, k)-bounded. ■

We now use Lemma 3 to prove that for a target trajectory
x, given a large-enough number of samples, there exist a
sequence of configurations that traces x, under the new
definition of (δ, r)-tracing (Definition 5). To do so, we use
several results that were used in the original proof of
probabilistic exhaustivity.

Lemma 4. Probabilistic exhaustivity. Let x : ½0,T �→X free be
a dynamically feasible trajectory. Let QN be a set of N
points sampled independently and identically from the
uniform distribution on the collision-free space X free and
set VN ¼ fxð0Þg[QN . For a given N, set

rN ¼ κ � ðlogðNÞ=NÞ1=D:

Here, D is a constant capturing the dimension of the system
and κ is a commutable constant depending on the system
dynamics, N, D, and some tuning parameter η ≥ 0.** Let

Figure 6. Depiction of t2 used in Def. 6. There might be multiple
points along x that satisfy dsr(x(t1), x(t)) = r (the points on the
boundary of the shown sub-Riemannian ball), we want t2 to be the
smallest.

Figure 7. For a given k > 1, we can always find rcurv > 0 for which a trajectory x is (rcurv, k)-bounded. (a) An example of x(t) not bounded
when dsr is too large. (b) An example of x(t) bounded when dsr small enough.

20 The International Journal of Robotics Research 0(0)

~AN be the event that there exists a discrete sequence of
configurations P ¼ fqig

n
i¼14VN that (δ, r)-traces x for

any δ 2 (0, 1) and r = rN. The probability that event ~AN

doesn’t happen, denoted by Pð~Ac

N Þ is asymptotically
bounded by

P

�
~Ac

N

�
≤O

	
N�ηlog�1

DN

:

As is defined above, η ≥ 0 is some tuning parameter.
Proof. Define T N ¼ fτN , 1, τN ,MNg as a sequence of

points such that (i) τN,1 = x(0), (ii) x(τN,i) and x(τN,i+1)
are at sub-Riemannian distances rN/2, where τN,i+1 >
τN,i is the smallest timestamp that satisfies dsr(x(τN,i),
x(τN,i+1)) = rN/2 (see Figure 6) and (iii) τN ,MN ¼ xðTÞ.
Furthermore, define BN ¼ fBN , 1,BN ,MNg a sequence of
sub-Riemannian balls such that BN,i is centered at x(τN,i)
and has radius rN/4. Define AN to be the event that each
ball in BN contains at least one point in VN (see
Figure 8).

In (Schmerling et al. 2015, Thm. IV.5) it was shown that
with probability at least

1� OðN�ηlog�1
DNÞ

it holds that there exists a discrete sequence of con-
figurations P ¼ fqigni¼14VN such that AN exists
and that requirements (i) � (iii) in Definition 5 hold for
δ and r = rN. Thus, we only need to show that re-
quirement (iv) in Definition 5 holds for δ and r = rN.
Namely, that

sup
t2½0, T �

inf
i2f1,…ng

dsrðqi, xðtÞÞ ≤ r:

Thus, we now show that "t2 ½0, T �,∃i s:t: ðqi, xðtÞÞ ≤ r
which will conclude the proof. We consider two
cases:

C1 x(t) lies at a center of some ball in BN. Thus, there exists
some i such that x(t) = x(τN,i) and it is straightforward to
see that dsrðqi, xðτN , iÞÞ ≤ rN=4.

C2 x(t) does not lie at a center of some ball in BN. Following
Lemma 3, there exists some constant rcurv for which x is
(rcurv, 2)-bounded. Fix N sufficiently large such that rN/
2 ≤ rcurv. Such N exists as lim

N →∞
rN = 0.

Assume that x(t) lies on the curve connecting x(τN,i) and
x(τN,i+1) for some i. We have that

dsrðxðτN , iÞ, xðtÞÞ þ dsrðxðtÞ, xðτN , iþ1ÞÞ
≤lðxðτN , i, tÞÞ þlðxðt, τN , iþ1ÞÞ
¼lðxðτN , i, τN , iþ1ÞÞ
≤ 2 � dsrðxðτN , iÞ, xðτN , iþ1ÞÞ:

(1)

The first inequality follows from Definition 3, the first
equality follows from Definition 2, the second inequality
follows from the fact that x is (rcurv, 2)-bounded. Now,

dsrðqi, xðtÞÞ þ dsrðxðtÞ, qiþ1ÞÞ
≤ dsrðqi, xðτN , iÞÞ þ dsrðxðτN , iÞ, xðtÞÞ
þ dsrðxðtÞ, xðτN , iþ1ÞÞ þ dsrðxðτN , iþ1Þ,qiþ1Þ

≤ dsrðqi, xðτN , iÞÞ þ dsrðqiþ1, xðτN , iþ1ÞÞ
þ 2 � dsrðxðτN , iÞ, xðτN , iþ1ÞÞ

≤ rN=4þ rN=4þ 2 � rN=2 ¼ ð3=2Þ � rN

the first inequality follows from Definition 3, the second
inequality from Eq. (1), the third inequality follows from
dsr(qi, x(τN,i)) ≤ rN/4 and the fact that x(τN,i) are spaced
along x at sub-Riemannian distance rN/2. See Figure 9.
Finally, we have

inf
j2f1,…ng

dsr
	
qj, xðtÞ

≤minðdsrðqi, xðtÞÞ, dsrðqiþ1, xðtÞÞÞ
≤ð1=2Þ � ð3=2Þ � rN < rN : ■

B Well-behaved inspection trajectories

In this section, we introduce the notion of a well-behaved
trajectory. Roughly speaking, it ensures that there are no singular
points along a trajectory which a POI can only be inspected
from. This, in turn, will allow us to ensure that trajectories that
trace an optimal inspection path cover the same set of POI.

Recall that an inspection-planning problem
P ¼ ðX , I ,S,l, qsÞ is a tuple where I is the set of all POI,X

Figure 8. Sub-Riemannian balls (green) along x (dark blue) spaced at sub-Riemannian distances rN/2. With high probability, each ball
contains at least one point. We select one point from each of the balls to form a tracing sequence PN (orange).

Fu et al. 21

is the configuration space of the robot and qs is the start
configuration. Furthermore, recall that X free ¼ clðX=X obsÞ
where cl(�) is the closure operator.

Definition 7. Inspecting configuration region. Let i2I be a
point of interest (POI), the inspecting configuration region of
i, denoted as X inspðiÞ, is defined to be the union of all
configurations from which the POI can be inspected. Namely,

X inspðiÞ ¼
�
q2X free : i2SðqÞ

�
:

Similarly, the inspecting configuration region of I 0
4I is

defined as

X inspðI 0Þ ¼
�
q2X free : I04SðqÞ

�
:

Definition 8.Well-behaving of an inspection trajectory. Let
x : ½0, T �→X free be a feasible inspection trajectory. x is said
to be strongly ξ-well behaved if "i2SðxÞ, there exists at
least one point along x whose ξ-neighborhood is completely
within the inspecting configuration region of i. Namely,

"i2SðxÞ,∃t 2 ½0, T � s:t: BeðxðtÞ, ξÞ4X inspðiÞ:

Similarly, x is said to be weakly ξ-well behaved if
"i2SðxÞ∖ðSðxð0ÞÞ[SðxðTÞÞÞ, there exists at least one
point along x whose ξ-neighborhood is completely within
the inspecting configuration region of i. Namely,

"i2SðxÞ∖ðSðxð0ÞÞ[SðxðTÞÞÞ,
∃t2 ½0, T � s:t: BeðxðtÞ, ξÞ4X inspðiÞ:

See also Fig. 11.
A strongly well-behaved trajectory extends into the in-

specting configuration region of some POI while a weakly
well-behaved trajectory can terminate at the boundary of
some inspecting configuration region. It is not hard to see,
that any strongly well-behaved trajectory can be shortened
to a weakly well-behaved trajectory without losing cover-
age. Thus, we introduce the notion of inspection completion
time which will simplify the proofs of the following lemmas
and theorems.

Definition 9. Inspection completion time. Let
x : ½0, T �→X free be a feasible inspection trajectory, then the
inspection completion time of x is defined as

TcðxÞ ¼ argmin
t2½0, T �

fSðxð0, tÞÞ ¼ SðxÞg:

Stated differently, the inspection completion time of x is
the last point along x that adds a new POI covered by
x. When it is clear from the context, we will use Tc instead
of Tc(x).

Using the above definitions, the following lemma gives
the condition under which a discrete sequence of config-
urations covers all POI that are inspected along a continuous
trajectory.
Lemma 5. Let x : ½0, T �→X free be a feasible weakly ξ-well
behaved inspection trajectory and let P ¼ fqmg

n
m¼14X free

be a discrete sequence of configurations. If

(i) q1 = x(0),
(ii) ∃m 2 [n] such that SðxðTcÞÞ4SðqmÞ, and
(iii) P (δ, r)-traces x for r ≤ ξ,

then SðxÞ4SðPÞ.
Proof. The sequence P (δ, r)-traces x, thus following

Definition 5, we have that

supt2½0,T � inf
j2f1,…ng

��qj�xðtÞ
��≤supt2½0,T � inf

j2f1,…ng
dsr

	
qj,xðtÞ

≤r:

Thus, "t 2 [0, T] we have that the closest point in P to x(t),
denoted by qclose(x, t) satisfies qclose(x, t) 2 Be(x(t), r). With
r ≤ ξ, we further have that qclose(x, t) 2 Be(x(t), r) 4 Be(x(t),
ξ).

Additionally, x is weakly ξ-well behaved. Thus fol-
lowing Definition 8, we have that

"i2SðxÞ∖ðSðxð0ÞÞ[SðxðTÞÞÞ,
∃t2 ½0, T �, j2 ½n� s:t: BeðxðtÞ, ξÞ4X inspðiÞ:

Namely, for every POI inspected along x (except for the
endpoints of x), there exists at least one configuration in P
from which the POI can also be inspected.

To show that SðxÞ4SðPÞ, we still need to show that
Sðxð0ÞÞ4SðPÞ (which follows trivially from the fact that
q1 = x(0)) and that SðxðTÞÞ4SðPÞ. To show the latter, we
consider two subcases:

C1 Tc < T. In this case SðxðTÞÞ4SðxÞ=SðxðTÞÞ, so SðxðTÞÞ
is already covered by SðPÞ,

Figure 9. Shortest distances from arbitrary point along x to points in PN. Sub-Riemannian distances are shown in orange and yellow.
Trajectory segment x(xm, xm+1) is shown in dark blue.

22 The International Journal of Robotics Research 0(0)

C2 Tc = T. In this case SðxðTÞÞ ¼ SðxðTcÞÞ4SðqmÞ for
some m 2 {1, …, n}, so POI that is inspected at x(T) is
covered by such SðqmÞ.

Thus, we have that SðxÞ4SðPÞ. ■

The following lemma gives the condition under which a
continuous trajectory covers all POI inspected along another
continuous trajectory.
Lemma 6. Let x : ½0, T �→X free be a feasible, weakly ξ-well
behaved inspection trajectory with optimal coverage
SðxÞ ¼ I*, and let y : ½0, T 0 �→X free be a feasible inspec-
tion trajectory. If

(i) y(0) = x(0),
(ii) y(T0) = x(T), and
(iii) sup

t2½0, T �
inf

t02½0, T 0 �
kxðtÞ � yðt0 Þk ≤ r for 0 < r < ξ,

then SðyÞ ¼ I* and y is weakly (ξ � r)-well behaved.
Proof. Following condition (iii) above, "t 2 [0, T] we

have that the closest point in y to x(t), denoted by yclose(x, t)
satisfies yclose(x, t) 2 Be(x(t), r). As r ≤ ξ, we further have that

ycloseðx, tÞ 2BeðxðtÞ, ξÞ: (2)

Additionally x is weakly ξ-well behaved. Thus, fol-
lowing Definition 8, we have that

"i2SðxÞ, ∃t2 ½0, T � s:t: BeðxðtÞ, ξÞ4X inspðiÞ: (3)

Combining Eq. (2) and (3), we have that

"i2SðxÞ∖ðSðxð0ÞÞ[SðxðTÞÞÞ,∃t, t0 2 ½0, T � s:t:,
yðt0Þ 2BeðxðtÞ, ξÞ andBeðxðtÞ, ξÞ4X inspðiÞ:

(4)

Eq. (4) implies that for every POI inspected along x (except
for at the endpoints), there exists at least one configuration
along y from which that POI can also be inspected. The POI
covered at the endpoints, namely at x(0) and x(T), are
covered by y following from conditions (i) and (ii) above.
I* ¼ SðxÞ4SðyÞ4I*, which, in turn, implies that SðyÞ ¼
I*.

We now show that y is also weakly (ξ � r)-well-
behaved. Following Eq. (4) and the fact that r < ξ, for
each y(t0) 2 Be(x(t), ξ), we further have that
Beðyðt0 Þ, ξ � rÞ4BeðxðtÞ, ξÞ4X insp. This implies that
"i2SðxÞ∖ðSðxð0ÞÞ[SðxðTÞÞÞ, there exists at least one
point along y whose (ξ � r)-neighborhood is completely
within the inspecting configuration region of i. Since

SðxÞ∖ðSðxð0ÞÞ[SðxðTÞÞÞ ¼ SðyÞ∖ðSðyð0ÞÞ[SðyðT 0ÞÞÞ,

and y satisfies the definition of being weakly (ξ � r)-well
behaved.

■

C Asymptotic optimality of IRIS

In this section, we are finally ready to prove the asymptotic
optimality of IRIS. To simplify the proof, we do so for a

variant of IRIS where at each iteration we construct a PRM
and not an RRG.While not identical, both roadmaps exhibit
similar properties which are typically easier to show for
PRMs (see, Karaman and Frazzoli (2011); Solovey et al.
(2018)).

We start (Thm. 2) by showing that w.h.p. given a weakly
ξ-well behaved trajectory with strong δcl-clearance and op-
timal inspection coverage, as the number of samples tends to
infinity, IRIS returns an inspection trajectory whose length
and coverage are bounded away from this trajectory. We then
continue to introduce the notion of a regular inspection
problem which, roughly speaking, states that the boundary of
inspecting configuration regions has some structure. This will
allow us (Thm. 3) to show that given a regular inspection
planning problem, and an optimal inspection trajectory (that
may be weakly ξ-well behaved, with weak δcl-clearance) then
w.h.p. IRIS returns an inspection trajectory whose length and
coverage are bounded away from this trajectory.
Theorem 2. IRIS comparison. Let P ¼ ðX , I ,S,l,qsÞ be
an inspection-planning problem and X free be the set of
collision-free configurations. Assume that the robot system
satisfies the assumptions mentioned in Schmerling et al.
(2015) and let x : ½0, T �→X free be a feasible inspection
trajectory such that

(i) x(0) = qs,
(ii) x has strong δcl-clearance for some δcl > 0,
(iii) x is weakly ξ-well behaved for some ξ > 0,
(iv) x has optimal coverage, namely SðxÞ ¼ I*, and
(v) ∃t 2 [0, T] such that BeðxðtÞ, γÞ4X inspðSðxðTcÞÞÞ for

γ > 0 where Tc is the inspection completing point of x.

Furthermore, letlN and SN denote the arc length and in-
spection coverage, respectively, of the trajectory returned
by IRIS at the N’th iteration using approximation pa-
rameters εN and pN, and a lower-bound connecting radius
rN (as defined in Lemma 4). Then for any fixed δ 2 (0, 1),

PðlN > ð1þ εN Þð1þ δÞlðxÞÞ ¼ O
0
@N�ηlog�1

DN
1
A

PðjSN j< pN � jI*jÞ ¼ O
0
@N�ηlog�1

DN
�
:

Proof. Let GN ¼ ðVN , EN Þ denote the roadmap con-
structed by IRIS at the N’th iteration and notice that
N ¼ jVj. Assume N to be sufficiently large so that rN ≤
min{ξ, γ, δcl/2} and [

v2VN

SðvÞ ¼ I*.
Following Lemma 4, we have that with a probability of at

least 1� OðN�ηlog�1=DNÞ, there exists a discrete sequence
of configurations P ¼ fqmg

n
m¼14V that (δ, rN)-traces x. We

now show that in the event that such P exists, then IRIS will
return a trajectory such thatlN ≤ (1 + εN)(1 + δ)l(x) and
jSN j ≥ pN � jI*j.

Assume that such a sequence P exists. We can bound the
minimal distance of any point in P to an obstacle in the
configuration space as follows:

Fu et al. 23

"m inf
a2Xobs

kqm � ak ≥ inf
a2Xobs

kx� ak � kqm � xk
≥δcl � rN
≥rN :

Thus, Beðqm, rN Þ4X free. As P ¼ fqmg
n
m¼1 ðδ, rN Þ-traces x,

for any point q along the locally optimal edge between qm
and qm+1, we have

kqm � qk ≤ dsrðqm,qÞ ≤ dsrðqm,qmþ1Þ ≤ rN :

Thus q2Beðqm, rN Þ4X free. Namely, all the vertices of P
as well as locally optimal paths connecting subsequent
vertices in P are collision-free. This, together with the
connection radius used ensures that all edges con-
necting vertices along P are collision-free and are added
to EN .

By construction, we have that q1 = qs = x(0). In
addition, following condition (v) and Definition 5 we
have that ı̈m 2 [n] such that SðqmÞ ¼ SðxðTcÞÞ. Together
with the fact that x is weakly ξ-well behaved, P(δ, rN)-
traces x, and rN ≤ ξ then by Lemma 5 it holds that
SðxÞ4SðPÞ. As x has optimal coverage (condition (iv)),
we have that SðPÞ ¼ I*.

Letl*N and S*N denote the arc length and inspection
coverage of optimal inspection trajectory on roadmap GN ,
respectively. We have that

lN ≤ ð1þ εN Þl*N ≤ð1þ εN ÞlðπPÞ
≤ð1þ εN Þð1þ δÞlðxÞ:

Here, the first inequality follows from Thm. 1, the second in-
equality follows from the fact thatl*N is the infimum taken over
the arc length of all trajectories that has optimal coverage on the
graph, and the last inequality follows from Definition 5.

Similarly, we have that

jSN j ≥ pN �
��S*N �� ¼ pN � jI*j:

Here, the first inequality follows from Thm. 1 and the first
equality follows from the fact that S*N ¼ I*. ■

Before stating our final result, we introduce the notion
of a regular boundary and regular inspection planning
problem. This is required because an optimal inspection
trajectory will never be strongly well-behaved but only
weakly well-behaved and special care needs to be taken in
order for IRIS to cover the POI covered by x*(T). The
notion of regularity will ensure that there always exists a
region near x*(T) that IRIS can sample inside. See also
Figure 12.
Definition 10. Regular boundary. A set X0

4X free is said to
have a regular boundary if there exists γ > 0 such that
"q2 ∂X , there exists q

0 2 X with Beðq0
, γÞ4X0

and q 2
∂Be(q0, γ).

Definition 11. Regularity of an inspection-planning prob-
lem. Let P ¼ ðX , I ,S,l, qsÞ be an inspection-planning
problem and X free be the set of collision-free configura-
tions. P is said to be regular if "q2X free, X inspðSðqÞÞ has
a regular boundary.

Definition 12. Strong/weak δcl-clearance.Let x : ½0, T �→ X free

be a feasible trajectory. x has strong δcl-clearance if"t2 [0, T],
x(t) is in δcl-interior ofX free (namely, x(t) is at least δcl away from
any point inX obs using the Euclidean distance). Furthermore, x
has weak δcl-clearance if there exists a sequence of homotopic
paths fxkgk2N that satisfies:

(i) lim
k→∞

xk = x.
(ii) x0 has strong δcl-clearance.
(iii) "k 2 ½0,∞Þ, xk is dynamically feasible and has strong

δk-clearance for some δk > 0, and lim
k→∞

δk = 0.
(iv) lim

k→∞
l(xk) =l(x).

We are now ready to state our final result.

Theorem 3. IRIS asymptotic optimality. Let
P ¼ ðX , I ,S,l,qsÞ be a regular inspection-planning

Figure 10. Inspecting configuration region (Definition 7).

24 The International Journal of Robotics Research 0(0)

problem and X free be the collision-free space. Assume that
the robot system satisfies the assumptions mentioned in
Schmerling et al. (2015) and let x* : ½0, T �→X free be an
optimal feasible inspection trajectory such that

(i) x*(0) = qs,
(ii) x* has weak δcl-clearance for some δcl > 0,
(iii) x* is weakly ξ-well behaved for some ξ > 0.

Furthermore, letlN and SN denote the arc length, and the
inspection coverage, respectively of the trajectory returned
by IRIS at the N’th iteration using approximation
parameters εN and pN, and a lower-bound connecting ra-
dius rN (as defined in Lemma 4). If limN→∞ εN = 0 and
limN→∞ pN = 1, we have that

lim
N →∞

PðlN > ð1þ ΔÞlðx*ÞÞ ¼ 0

for any Δ > 0 and that

lim
N →∞

PðjSN j< jI*jÞ ¼ 0:

Proof. Assume w.l.o.g. that l(x*) > 0. Following
(Karaman and Frazzoli 2011, Lemma 50) and the fact that
x* has weak δcl-clearance, there exists a sequence fxkgk2N
of paths such that lim

k→∞
xk = x* and xk has strong δk-clearance

where fδkgk2N is a sequence of real numbers such that lim
k→∞

δk = 0. Choose k0 2N such that "k ≥ k0 we have that

lðxkÞ ≤ ð1þ Δ=4Þ �lðx*Þ,
and that

sup
t*2½0, T*�

inf
t2½0, T �

kxkðtÞ � x*ðt*Þk ≤ ξ � ξk ,

with ξk 2 (0, ξ). Furthermore, we assume that k0 is large
enough such that"k ≥ k0, the inspection completing point of
xk equals its completion time (namely, Tc(xk) = Tkwhere Tk is
the completion time of xk).

Notice that as x* and xk are homotopic, we have that
xk(0) = x*(0) and xk(Tk) = x*(T). Thus, using Lemma 6 we
have that SðxkÞ ¼ I* and that xk is weakly ξk-well behaved.

To use Thm. 2, we show how to construct a new tra-
jectory x0k that extends xk into the interior of
X inspðSðxkðTcÞÞÞ. This is similar to the construction used
in (Schmerling et al. 2015, Thm. VI.2). As
xkðTkÞ 2 ∂X inspðxkðTkÞÞ and since the inspection planning
problem P is regular, then there exists some configuration
z such that z2X inspðxkðTkÞÞ, Beðz, γÞ4X inspðxkðTkÞÞ and
x*(T) 2 ∂Be(z, γ) for some γ > 0 (see also Figure 13).

Set z0 to be the configuration on the straight-line seg-
ment connecting xk(Tk) and z such that dsr(xk(Tk), z0) ≤
(Δ/4)l(x*). Finally, set x0k to be the extension of xk con-
structed by concatenating xk with the shortest sub-
Riemannian path between xk(Tk) and z0. We now bound
the arc length of x0k by

l
	
x0k

≤lðxkÞ þ dsrðxkðTkÞ, z0Þ

≤lðxkÞ þ ðΔ=4Þlðx*Þ
≤ ð1þ Δ=4Þ �lðx*Þ þ ðΔ=4Þ �lðx*Þ
¼ ð1þ Δ=2Þ �lðx*Þ:

(5)

Clearly, for γ0 = kz0 � xk(T)k it holds that
Beðz0, γ0 Þ4Beðz, γÞ4X inspðxkðTkÞÞ. In addition, for any
point p2 x0k along the path between xk(Tk) and z0 we have
that

inf
a2Xobs

kp� ak≥ inf
a2Xobs

kxkðTkÞ � ak � kp� xkðTkÞk

≥ δk � δk=2

¼ δk=2:

Thus, x0k has strong δk/2 clearance.
Notice that x0k satisfies all requirements of Thm. 2. Using

a value of δdΔ/4, we have that

Figure 11. Strongly and weakly well-behaving trajectories (Definition 8). x1 is strongly well-behaved, while x2 is weakly well-behaved. For
trajectory x1 : ½0, T1�→X, inspection completion time Tc(x1) < T1. For trajectory x2 : ½0, T2�→X, inspection completion time Tc(x2) = T2.

Fu et al. 25

OðN�ηlog�1
DNÞ

¼ P
	
lN > ð1þ εN Þð1þ Δ=4Þ �l

	
x0k

≥ PðlN > ð1þ εN Þð1þ Δ=4Þð1þ Δ=2Þ �lðx*ÞÞ

≥ PðlN > ð1þ εN Þð1þ ΔÞ �lðx*ÞÞ:

Here, the first equality follows from Thm. 2, the first in-
equality follows from equation (5), and the last inequality
follows from the fact that Δ 2 (0, 1). Similarly, Thm. 2 im-
plies that

PðjSN j< pN � jI*jÞ ¼ OðN�ηlog�1
DNÞ:

Using the fact that limN→∞ εN = 0 and that limN→∞ pN = 1,
we have that

0 ¼ lim
N →∞

OðN�ηlog�1
DNÞ

¼ lim
N →∞

PðlN > ð1þ εN Þð1þ δÞlðx*ÞÞ

¼ lim
N →∞

PðlN > ð1þ 0Þð1þ δÞlðx*ÞÞ

¼ lim
N →∞

PðlN > ð1þ δÞlðx*ÞÞ:

Similarly,

0 ¼ lim
N →∞

OðN�ηlog�1
DNÞ

¼ lim
N →∞

PðjSN j< pN � jI*jÞ

¼ lim
N →∞

PðjSN j< 1 � jI*jÞ

¼ lim
N →∞

PðjSN j< jI*jÞ:

■

‡There may be more than one optimal path and it
is possible that n* ≥ jVj since P* may revisit vertices
on G.

§The assumption that PPniþk* was the first path pair that

was generated is not required for Lemma 2 to hold but it
simplifies the proof.

¶Strictly speaking, when nj = ni, the notation PPni and
PPnj is ambiguous. However, to simplify notation, we
continue to refer to PPni as the path pair for which the
induction hypothesis holds and to PPnj as the newly created
path pair.

kRoughly speaking, a trajectory is said to be dynamically
feasible if there is a control function that satisfies the ki-
nematic constraints of the system. For a precise definition,
see (Schmerling et al. 2015, Sec. II).

**For exact definitions of κ and D, see (Schmerling et al.
2015, Thm. IV.5).

Figure 12. If the inspection planning problem is regular, namely all (non-empty) inspecting configuration regions have regular
boundaries, then there always exists a small region near x(T) that is within the same inspecting configuration region (denoted by purple
circle in the figure).

Figure 13. We construct an extended trajectory x
0

k by extending xk
into X inspðxkðTkÞÞ. The extended part is shown in red, whose
length is required to be shorter than (Δ/4)l(x*).

26 The International Journal of Robotics Research 0(0)

	Asymptotically optimal inspection planning via efficient near
	1. Introduction
	2. Related Work
	2.1. Sampling
	2.2. Inspection planning
	2.3. Path planning on graphs

	3. Problem definition
	4. Method overview
	4.1. Graph inspection problem
	4.2. Overview of IRIS

	5. Method
	5.1. Roadmap construction
	5.2. Graph inspection planning
	5.2.1. Optimal planning
	5.2.2. Near-optimal planning

	5.3. Tightening approximation factors
	5.4. Implementation details
	5.4.1. Lazy computation in graph inspection planning
	5.4.2. Node extension in graph inspection planning
	5.4.3. Heuristic computation in graph inspection planning

	6. Theoretical guarantees
	7. Results
	7.1. Planar manipulator scenario
	7.2. Bridge inspection scenario
	7.3. Pleural effusion inspection scenario

	8. Conclusion and future work
	8.1. Dynamic updates in graph inspection planning
	8.2. Balancing graph search and lazy computation
	8.3. Efficient sampling of configurations in RRT construction
	8.4. Employing multiple heuristics in graph inspection planning
	8.5. Adaptively updating approximation parameters

	Acknowledgments
	Declaration of conflicting interests
	Funding
	ORCID iDs
	Notes
	References
	Appendix
	Appendix A. Near-optimal inspection graph search
	Appendix B. Asymptotically optimal inspection planning
	A Probabilistic exhaustivity
	B Well-behaved inspection trajectories
	C Asymptotic optimality of IRIS

