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Encoding Desired Deformation Profiles in
Endoscope-Like Soft Robots

Daniel S. Esser, Margaret F. Rox, Robert P. Naftel, D. Caleb Rucker, Eric J. Barth, Alan Kuntz,
and Robert J. Webster III

Abstract—Prior models of continuously flexible robots typically
assume uniform stiffness, and in this paper we relax this assump-
tion. Geometrically varying stiffness profiles provide additional
design freedom to influence the motions and workspaces of
continuum robots. These results are timely, because with recent
rapid advancements in multimaterial additive manufacturing
techniques, it is now straightforward to create more complex
stiffness profiles in robots. The key insight of this paper is to
project forces and moments applied to the robot onto its center of
stiffness (i.e. the Young’s modulus-weighted center of each cross
section). We show how the center of stiffness can be thought of
as analogous to a “precurved backbone” in a robot with uniform
stiffness. This analogy enables a large body of prior work in
Cosserat Rod modeling of such robots to be applied directly
to those with stiffness variations. We experimentally validate
this approach using multimaterial, soft, tendon-actuated robots.
Lastly, to illustrate how these results can be used in practice, we
investigate how stiffness variation can improve performance in a
neurosurgical task.

INTRODUCTION

The flexible and curvilinear nature of continuum robots
enables them to navigate through narrow, constrained environ-
ments where rigid robots are not sufficiently dexterous. These
robots typically have an elastic backbone running down their
centerline, or have distributed elasticity that can be modeled as
such. They can be actuated by tendons that apply loads on the
elastic body, causing them to deform in desired directions. The
stiffness properties of the backbone dictate how the robot’s
shape responds to actuation or external loads. Such robots
have been applied to surgical applications [1]–[4], industrial
tasks [5]–[9], and even designed for use in outer space [10],
[11], among other applications. In many such applications, the
inherent compliance of these robots provides safety as they
interact with their surrounding environment.

Some of the earliest examples of flexible robots consisted
of hyperredundant snake-like robots with many rigid sections
connected by passive elastic or actuated joints [12]–[14].
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In contrast with hyperredundant robots, which have a finite
number of unactuated degrees of freedom (DOF), continuum
and soft robots, inspired by analogous tentacle arms found in
biology [15], have an infinite number of DOF because they
bend continuously. A variety of actuation approaches have
been proposed for continuum robots, including pneumatics
(see e.g. [16]), flexible push-pull rods [17], concentric tube
robots [18], [19], and tendon actuation [20], [21].

Early continuum robots used simple actuators, such as
straight tendons or pneumatic bellows and typically took on
constant curvature shapes when actuated [22], [23]. More
recently the effects of nonlinearly routed tendons have been
modeled [24], increasing the design space for continuum
robots (see e.g. [25], [26]). The stiffness properties of the
backbone map loads into motions, and we believe that there
is an opportunity to consider stiffness design in more detail to
endow such robots with new properties.

In contrast with continuum robots, which typically have
a central backbone along which they bend, soft robots are
usually made entirely out of soft elastomers with no distinct
backbone (see e.g. [15]). Soft robotic systems use variable ma-
terial stiffness and geometry to mechanically encode desired
deformations. Pneumatically-actuated soft robots are typically
designed to have higher stiffness in certain directions to induce
preferential modes of deformation, (see e.g. [27]–[31]), or to
change how soft robots grip objects [32].

Prior work considering more general stiffness profiles in
continuum robots has included an asymmetric stiffness pneu-
matic robot design proposed by [33], where the stiffness
properties of the stiffer and softer segment were modeled as
two offset springs, and their relative stiffness was used to tune
the ratio of bending to elongation. Additional secondary back-
bones have been proposed to change the stiffness profile of
a tendon-driven manipulator, to enable high-precision micro-
motions [34]. Barrientos-Diez et al. [35] used asymmetric
joints to create segments of a TDCR manipulator that bend
with constant curvature in preferential bending directions.
Recently, concentric push-pull robots have been made from
collections of laser patterned tubes whose stiffness centers are
offset from each other [36], [37].

This paper builds on the interest in asymmetric stiffness
profiles, presenting a rod-based modeling approach for con-
tinuum robots with asymmetric and inhomogeneous stiffness
profiles. By conceptualizing the stiffness center as a (poten-
tially) precurved symmetric beam, the robot’s deformation can
be directed in different ways by shifting the position of the
stiffness center relative to the tendon, as illustrated in Fig. 2b.

Cosserat rod theory has also been used to model the
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dynamics of continuum robots (see e.g. [24], [38]–[40]), as
well as provide a framework control [41].

Lagrangian methods for the modeling of continuum robots
are another popular approach as they are well-suited to capture
the dynamics and constraints of these systems. Typically
when using a Lagrangian approach, the continuum structure
is discretized, either as a constant-curvature segment [42] or
as a series of discrete masses connected by elastic joints [43];
alternatively model basis functions to represent the strain field
[44] have been suggested.

More general finite-element-based computational techniques
(FEM) have been proposed to model the deformations of
beams with spatially-varying mechanical properties [45]; this
approach could, in theory, be integrated into a soft robot
modeling framework such as SOFA [46]. While FEM can
account for effects like cross sectional deformations, for many
continuum robots (e.g. TDCRs) these effects are negligible. In
this work we demonstrate that such tendon driven robots can
be effectively modeled using a simpler system of ordinary
differential equations rather than requiring a full volumetric
model with partial differential equations. This has advantages
in terms of computational efficiency, making it useful for
design optimization and real-time control. The Cosserat rod
equations can be numerically solved at multiple kilohertz with
a standard computer, i.e. fast enough for real-time control, and
to enable design optimization and planning [26], [47], [48].
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Fig. 1. An example of a continuum robot with an inhomogeneous stiffness
profile and one straight tendon. Shifting the stiffness center along arclength
enables the actuated curvature to dramatically change directions along ar-
clength when actuated with a single straight-routed tendon.

In recent years, rapid prototyping techniques have advanced,
enabling the fabrication of continuum robots with more gen-
eral stiffness profiles, e.g. beyond traditional symmetric, ho-
mogeneous, and constant arclength cross-sections. Examples
include concentric tube robots [49], [50], and pneumatic robots
[31], [51], [52], among others. Various techniques enable
straightforward creation of more complex general stiffness

profiles along the arclength and across the cross section of
the device, either using multimaterial printing [51], [53], or
via selective material removal [54]–[56].

In this paper we show how projecting loads to the center of
stiffness and treating it as the robot’s backbone enables geo-
metrically exact models for robots with (potentially) nonlinear
tendons to apply exactly to multimaterial soft robots. This
analogy enables a large body of prior work in Cosserat Rod
modeling of such robots to be applied directly to those with
stiffness variations. We also contribute experimental validation
of this model using an additively manufactured, multimaterial
tendon-actuated soft robot. We explore how the use of material
variation to shift the stiffness center along the robot can be
used to encode desired deformation profiles into a soft robot.
These deformation profiles provide new tools for continuum
robot designers to customize the behavior of their robots for a
particular application. To illustrate the usefulness of this in an
example application, we consider a neurosurgical procedure
in which the surgeon must sweep the tool tip across a curved
surface deep inside the brain. The goal is to touch as many
points as possible on the surface with an electrosurgical probe,
to reduce the size of the structure that creates cerebrospinal
fluid. This can cure patients who suffer from hydrocephalus,
i.e. over-production of this fluid, and hence have excessive
pressure within their heads. We show how stiffness variation
can improve performance of this task without increasing the
complexity of the actuation system, by enabling the robot to
deform into shapes that are more conducive to the constrained
workspace.

MODELING APPROACH

Cosserat Rod Model

We base our rod modeling on standard assumptions: materi-
als are linearly elastic, isotropic, and rods are slender, meaning
cross-sectional deformations are negligible. These assumptions
are generally reasonable for rod-like soft robots [24], [36],
[57], but may not apply to fluidically driven soft robots, whose
actuators can sometimes locally deform the material by 100%
or more, or hydrostat-type actuators which leverage cross-
sectional changes to elongate, bend, or contract. If materials
with anisotropies are used (for example, fabric or string strain
limiters are commonly used in soft robots), the constitutive
stiffness law in the model would need to be reconsidered.
We assume a common Poisson’s ratio across a multimaterial
robot’s different Young’s moduli. This assumption is reason-
able for soft robots comprised of similar types of materials,
but may not be the case if different classes of materials are
combined (i.e. metals and elastomers).

The model proposed in this work is an extension of the
coupled Cosserat rod and string model of [24], in which a
robot with uniform stiffness and arbitrarily routed tendons was
modeled. The model suggested in [24] consists of a set of
ordinary differential equations for the position and orientation
p, R, and internal forces and moments n,m of the rod-
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like robot as they relate to the distributed applied forces and
moments f and l.

ṗ = Rv,

Ṙ = Rω̂,

ṅ = −f,

ṁ = −ṗ× n− l,

(1)

where ˆ is the skew operator. The forces and moments (f and
l) are the sum of the tendon loads and any external loads on
the continuum robot.

The linear and angular rates of change of the rod reference
frame are given by:[

v
ω

]
= K−1

[
RTn

RTm

]
+

[
v∗

ω∗

]
. (2)

Note that v∗ and ω∗ describe the reference (unactuated) shape
of the rod. In the case of a straight rod, these are [0, 0, 1]T and
[0, 0, 0]T respectively. When the elastic member is chosen to
be isotropic with a symmetric and homogeneous cross section
and the reference frame is chosen to be at the center of the
cross section and aligned with the principal axes, the stiffness
matrix is diagonal, and is typically written in terms of its
components:

K =

[
KSE 0
0 KBT

]
,

where KSE = diag(GA,GA,EA) and KBT =
diag(EIxx, EIyy, G(Ixx + Iyy)). The cross sectional area A
and the second moment of area I are geometric parameters
in the stiffness matrices, while the Young’s modulus E and
the shear modulus G = E

2(1+µ) are material properties. The
derivation of these matrices for the case of an inhomogeneous
cross section is described in the subsequent section.

Elasticity of Inhomogeneous Cross Sections

First we consider the elastic properties of a general cross
section. The axial stress, bending moments, torsional moment,
and shear stresses can be written as:

nz = vz

∫
E dA+ ωx

∫
Ey dA− ωy

∫
ExdA. (3)

mx = vz

∫
Ey dA+ ωx

∫
Ey2 dA− ωy

∫
Exy dA, (4)

my = −vz

∫
ExdA− ωx

∫
Exy dA+ ωy

∫
Ex2 dA. (5)

mz = −vx

∫
Gy dA+ vy

∫
GxdA+ ωz

∫
G(x2 + y2) dA.

(6)

nx = vx

∫
GdA− ωz

∫
Gy dA, (7)

ny = vy

∫
GdA+ ωz

∫
GxdA. (8)

Note that the Young’s modulus E = E(x, y, s) may vary
within the cross section, and that the cross section need not be
constant over arclength. Judicious choice of a reference frame
can simplify these constitutive equations. If the origin of the
coordinate system is chosen as the stiffness center, the sec-
tional moments

∫
ExdA and

∫
Ey dA are zero. Equivalently,

the coordinates of the stiffness center are:

xnc =

∫
ExdA∫
E dA

, ync =

∫
Ey dA∫
E dA

. (9)

Choosing the stiffness center Pnc =
[
xnc ync

]⊺
as the

origin as shown in Fig. 2a, we have decoupled axial force
and bending force. Further simplification can be achieved by
choosing the coordinate system (x′ and y′) as the principal
axes of the cross section so that:∫

Ex′y′ dA = 0. (10)

This is shown conceptually in Fig. 2a, where the stiffness
center offset pnc is calculated from equations 9 and the rotation
Rnc from equation 10. In this case, equations 3 through 5
reduce to:

n′
z = vz

∫
E dA,

m′
x = ωx′

∫
Ey′

2
dA,

m′
y = ωy′

∫
Ex′2 dA,

(11)

where the quantities with ′ are measured in a frame centered
at the stiffness center and aligned with the principal axes.

We can apply a similar argument to decouple the shear and
torsional modes of deformation. Assuming that any variation
of the Poisson’s ratio across the cross section can be neglected
(resulting in E ∝ G), the torsional and shear strains can be
written as:

m′
z = ωz

∫
G(x′2 + y′2) dA,

n′
x = vx′

∫
GdA,

n′
y = vy′

∫
GdA,

(12)

Decoupling the modes of deformation by this choice of
coordinate system simplifies the problem, since the bending
stiffness matrix is now diagonal. The diagonalized bending
stiffness matrices used in the Cosserat rod model can be
computed by evaluating the integrals in (11) and (12).

At the stiffness center, the constitutive stress-strain law can
be written as: [

nnc

mnc

]
= Knc(

[
unc

vnc

]
−

[
u∗
nc

v∗nc

]
), (13)

where the stiffness matrix at the stiffness center is:
Knc = diag(∫ GdA, ∫ GdA, ∫ E dA,

∫ Ex2 dA, ∫ Ey2 dA, ∫ G(x2 + y2) dA).
(14)
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The vector
[
u∗
nc v∗nc

]⊺
is referred to as the precurvature of

the stiffness center path, shown in red in 2b. u∗
nc and v∗nc are

the differential forms of the translation and rotation described
by pnc and Rnc respectively. The curvature vector

[
unc vnc

]⊺
describes the deformed shape of the robot as a result of
the applied loads. The path of the stiffness center can be
thought of as analogous to a virtual homogeneous beam with
precurvature. A homogeneous beam with symmetric stiffness
has a diagonal stiffness matrix describing the elastic properties
of the centerline of the beam. This means that, for example,
when a normal force is applied to the center of the beam, it
does not bend and only elongates/contracts. This is not the case
with an asymmetric beam; a pure normal force at the centerline
of the beam can cause bending. However we demonstrate that
there exists a point (stiffness center) within the cross-section
where the stiffness matrix is diagonal and a pure normal
force does not cause bending. The path of the stiffness center
along arclength is functionally equivalent to a homogeneous
beam through that path, with the same stiffness matrix. The
position of the stiffness center relative to each tendon defines
the moment arm of the applied tendon force to the virtual
homogeneous beam. By choosing stiffness parameters to route
the stiffness center to a specific path relative to each tendon,
one can change the direction and magnitude with which each
tendon bends the soft robot.

pnc

E(x,y)

(a) (b)

Rnc

x’
y’

x

y

s

Fnc

Fgc

Fgc

Fnc

Fig. 2. (a) In a generic multimaterial cross section, the stiffness center frame
(red) may be different from the geometric center frame (black). The stiffness
center is offset by pnc, with principal axes of the cross section rotated by Rnc.
(b) The path of the stiffness center may vary nonlinearly along the arclength
of the device. This path can be thought of as a virtual homogeneous and
symmetric beam with precurvature.

APPLICATION TO A TWO-MATERIAL TENDON-OPERATED
ROBOT

To demonstrate this modeling framework, consider an an-
nular robot made of two materials, one stiffer than the other
(Fig. 3). The wall of the device is fabricated with two materials
with respective Young’s moduli E1 and E2. θw is the angular
width of the stiff portion of material, while θm is the angle of
the midpoint of the stiffer segment (E2) relative to the global
coordinate system; this defines the axis of symmetry of the

cross section. The stiffness center is guaranteed to lie on this
axis of symmetry at a distance rnc such that the moments
of area relative to that point, weighted by the stiffness of the
respective segments, are equal. With this choice, the radial and
angular placement of the stiffness center can be parameterized
by the two angles θw and θm.

The axis of symmetry shown in Fig. 3 is the principal axis
of the inhomogeneous cross section. We assign a new frame
corresponding to the stiffness center with an origin at the
stiffness center and axes xnc along the axis of symmetry, ync
normal to xnc and in the cross section plane, and znc parallel
to the z axis of the geometric center frame zgc, as shown in
Fig. 2b. The homogeneous transformation from the geometric
center to the stiffness center is

NCTGC =

[
Rz(θm(s)) p

nc

0T 1

]
(15)

where,

p
nc

=

rnc(s) cos(θm(s))
rnc(s) sin(θm(s))

0

 . (16)

is the offset of the stiffness center from the geometric center.
With the relationship between the geometric center and the
stiffness center known, we can thus express the reference twist
of the stiffness center of the rod as,

v∗ =

 0
0

θ̇m


ω∗ = RT ṗ∗

nc

= Rz(θm(s))T

 ṙnc cos θm − θ̇m sin θm
ṙnc sin θm + θ̇mrnc cos θm

1

 ,

(17)

where ˙ denotes a derivative with respect to the arclength
variable s, and ∗ denotes the unactuated shape of the NC curve.

The cross section of the device is comprised of two annulus
sectors with different Young’s modulus values, as shown in
Fig. 3. Given inner and outer radii ri and ro and spanning an
angle of θd, the radius of the centroid from the center of the
circle (which lies on the symmetric axis) of an annulus sector
is

r̄ =
4 sin θd

2

3θd

r3o − r3i
r2o − r2i

. (18)

The radius of the stiffness center can be calculated as the
centroid of each sector weighted by each respective area and
Young’s modulus:

rnc =
r̄1A1E1 + r̄2A2E2

A1E1 +A2E2

=
4(r3o − r3i )

3(r2o − r2i )

sin( θw2 )

θw

E1θw − E2(2π − θw)

E1θw + E2(2π − θw)

(19)

With the transformation between the geometric center and
the stiffness center known, it is possible to calculate the
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Fig. 3. A cross section of the two-material design parameterization used to
vary the placement of the stiffness center as a function of arclength, where
the dark blue denotes a stiffer material than the light blue.

moment of area of each segment of the cross section in the
stiffness center frame:

Ixnc
=

(θm+θw/2)∫
(θm−θw/2)

∫ ro

ri

(r sin θ)2r dr dθ

Iync =

(θm+θw/2)∫
(θm−θw/2)

∫ ro

ri

(r cos θ − rnc(s))
2r dr dθ.

(20)

With NCTGC known, we can now express the distributed
forces and moments due to the tendons at the stiffness center
and apply existing techniques to solve the Cosserat rod equa-
tions in the stiffness center frame, then convert the calculated
deformations back to the geometric centerline of the device.

Effect of Stiffness Center Offset: Finite Element Demonstration

Previously, we described how an arbitrary cross section
has a reference frame (the stiffness center) at which the
stiffness matrix is diagonal. To demonstrate how this relates
to the behavior of a simple asymmetric beam, we simulated
a 20mm long segment of the constant offset prototype (pa-
rameters listed in Table I Constant N.C.) with a Solidworks
(Dassault Systems) linear static finite element analysis. If a
compressive load is applied to the cross section at the center
of a homogeneous cross section, the beam would experience
pure compression and no bending (disregarding buckling).
However, in the case of an asymmetric cross section, when a
compressive load is applied to the geometric center, it causes
bending (θtip = 10.7◦ or κ = 9.39m−1) because of the offset
between the load and the stiffness center, as shown in the left
of Fig. 4. The moment experienced at the stiffness center is
the product of the force and the offset between the stiffness
center and the point of load application.

We calculated the stiffness center offset using Eq. 19 and the
cross sectional parameters in Table I; for this cross section the

stiffness offset is rnc = 2.12mm. Then, we applied the same
load centered at the stiffness center of the cross section, as
shown in the right of Fig. 4. The force is now a pure normal
force in the stiffness center frame, and since the stiffness
matrix is diagonal in this frame, the FEM simulation predicts
pure compression (0.63mm or 3.2%) with negligible bending
(θtip < 0.1◦). By modeling the robot in this reference frame,
the deformation modes are decoupled, meaning that normal
forces only cause compression/elongation, and moments only
cause bending.

1 N
1 N

Geometric
Center

Sti�ness
Center

0.63 mm
10.7°

Fig. 4. Results of Finite Element Simulation of a 10mm segment of the
constant offset stiffness center cross section. A small annular sector of the
cross section is made of elastomer with a higher stiffness (shown in blue).
On the left, a 0.5N normal load is applied at the geometric center which causes
the prototype to bend to the left. On the right, the same load is applied to
the stiffness center, which we calculated based on Equation 19. With the load
at the stiffness center, the prototype experiences pure compression and no
bending.
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Fig. 5. Tensile testing of 3D printed samples with various mix ratios of elastic
and rigid resin; * indicates materials that were used in the tendon manipulator
prototypes.
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PROTOTYPE FABRICATION AND EXPERIMENTS

We 3D printed our prototypes on a Multimaterial printer
(Stratasys: J35). We used two materials to create asymmetric
stiffness profiles: the 55D mix ratio and 95D mix ratio with
Young’s moduli of 0.66 and 15.93 MPa, respectively. These
materials were chosen to demonstrate the effects of having ma-
terials with contrasting stiffness (> 10× difference in Young’s
modulus) in the robot cross-section. The manipulator features
straight channels embedded in the elastic 3D printed structure
to route the tendons. The tendon channels are threaded with
10 lb fishing line which is knotted and secured to the end of
the device with cyanoacrylate glue.

We characterized the stiffness of a range of different mate-
rial types available on the Stratasys J35 Polyjet printer with
different stiffness achieved by mixing an elastic resin (Elastico
FLX934) with a hard resin (VeroUltra White RGD825) during
the printing process. The Young’s modulus was determined
by calculating the slope of the linear portion of each stress-
strain curve. The stress-strain curves are shown in Fig. 5
alongside the linear fit used to determine the Young’s modulus.
As a point of reference, for a beam with radius 4mm and
length 120mm bending in a 90◦ arc, the maximum strain is
.05mm/mm; thus as Figure 5 shows, all of the materials remain
relatively linear within this range.

Laser Scanner

Mass

Prototype

-20 0 20 40 60
X [mm]

0

20

40

60

80

100

120

Z 
[m

m
]

Tendon 1: 0.49N
Tendon 1: 0.67N
Tendon 1: 0.98N
Tendon 2: 0.49N
Tendon 2: 0.67N
Tendon 2: 0.98N

Fig. 6. Experimental setup to measure the robot shape. Inset: Point cloud
data is converted to an arclength parameterized curve by sequentially fitting
cylinders and interpolating with a spline.

TABLE I
PROTOTYPE DESIGN PARAMETERS

Prototype: Constant N.C. Helical N.C.

Outer Radius ro 4mm 4mm
Inner Radius ri 3.2mm 3.2mm
Length L 120mm 120mm
Position of Stiff Sector
θm

π πs/L

Width of Stiff Sector θw π/16 π/4 − (π/8)(s/L)

Soft Material 50 Durometer Mix E = 0.66MPa

Stiff Material 95 Durometer Mix E = 15.93MPa

Tendon Locations θt1 = 0, θt2 = π θt = π/2

To evaluate the proposed model on the prototypes, we
measured their shape using a laser scanning coordinate mea-
suring machine (FARO Quantum Max Arm). The setup used
to measure the robot shape is shown in Fig. 6, and includes
the laser scanner, the baseplate, and the robot. Some examples
of pointcloud data and the measured rod shape are shown in
the inset. In each experiment, we affixed a robot prototype to
the rigid base with known features that we use to conduct a
point-based registration of the base frame. We actuate the ma-
nipulator into several configurations with various calibration
weights applied to the tendons. The shape of the geometric
center of the rod is determined by sequentially fitting cylinders
to the laser scanner point cloud in a piece-wise fashion using
lsqnonlin in MATLAB.

The first prototype, called the constant offset stiffness center
prototype, has a stiff section comprising 22.5◦ of the cross
section, which did not change with arclength. This prototype
demonstrates how offsetting the stiffness center can change
the properties of the manipulator when actuated with tendons
at different distances from the stiffness center. Both tendons
are equidistant from the geometric center on either side, but
the stiffness center is closer to one than the other, resulting
in a different range of motion for each tendon. The second
prototype, called the helically-varying stiffness center proto-
type, features a segment that varies helically along arclength
while decreasing in width, showcasing the potential of moving
the stiffness center to enable non-planar and non-constant
curvature bending.

MODEL VALIDATION RESULTS

Constant Offset Stiffness Center Prototype

As mentioned earlier, the constant offset prototype has stiff
material with a constant width and position in the cross section
as a function of arclength, as described in Table I. As a
result, the stiffness center is to the left (negative x̂) of the
geometric center, as shown in Fig. 7. Although both tendons
are equidistant from the geometric center of the rod, the
one at θ = 0 has a larger moment arm from the stiffness
center than the one at θ = π. The two tendons were pulled
at equal tensions, and the shape of the rod was measured
using the laser scanning setup. The model-predicted (solid
line) and measured (dashed line) shapes show the expected
difference in bending between the two tendons. Table II
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θt1 = 0
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θm(s) = π
θw(s) = π/16

Lorem ipsum

τ
2 = .98N

τ
2 = 0.67N

τ
2 = 0.49N

τ 1 =
 0.49N
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X

Fig. 7. Comparison of the model predicted backbone shape with laser-scanned backbone shape for the constant stiffness center prototype. The CAD rendering
on the left shows the geometry of the soft tendon robot with a constant bi-material pattern in the cross-section. On the right, we show the model-predicted
shape and the measured shape of the TDCR at these configurations. The offset stiffness center in this design effectively biases the workspace toward the other
direction.

shows the numerical results for the tip error and shape error,
which are all small relative to the sizes of the prototype. We
note that the model prediction errors tend to increase with
larger deformations both in absolute and percentage terms, as
reflected in Table II. This may be a result of nonlinear material
properties which become more prominent at higher strains.
We also note that the model tends to over-predict curvature
near the tip of the manipulator, compared to the experimental
results - this is perhaps most apparent in the τ1 = 0.98N case
in Fig. 7. This is most likely a result of frictional losses causing
a reduction of tendon tension over its arclength, which could,
in future, be incorporated into the model to refine the accuracy.
These results demonstrate how the workspace of a continuum
robot can be biased in a particular direction through the use
of multimaterial fabrication.

Helical Offset Stiffness Center Prototype

The second prototype has an annular segment of stiff
material with decreasing width and helically varying position
in the cross section as a function of arclength. The design
parameters of the cross section are shown in Table I. We
tested a single straight tendon with an angular position of
θt =

π
2 . Since the stiffness center is not constant with respect

to arclength in this prototype, the straight tendon applies a

TABLE II
CONSTANT N.C. SUMMARY OF MODEL COMPARISON RESULTS

Tendon Tip Error (% of L) Shape Error

Tension ∥p(L)− p̂(L)∥
L∫

s=0

∥p(s)−p̂(s)∥
s

θ
t
1
=

0 0.49N 1.25 mm (1.0%) 1.6%
0.67N 2.03 mm (1.7%) 2.3%
0.98N 3.09 mm (2.6%) 2.8%

θ
t
2
=
π 0.49N 1.37 mm (1.1%) 2.1%

0.67N 1.99 mm (1.7%) 2.3%
0.98N 3.97 mm (3.3%) 2.8%

distributed moment, the direction of which changes along the
robot. This causes the prototype to bend in a roughly helical
shape, as shown in 8.

Note that near the middle of the manipulator, the curvature
is the smallest because the tendon path is closer to the stiffness
center, thus the magnitude of the moment is smaller, and
as the tendon passes over the midpoint of the manipulator,
the curvature switches directions. In Table III we show the
computed tip and shape error. We note that in this more
complex design, the shape error is slightly higher than the
constant offset prototype, though the model generally predicts
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Tendon 1
θt1 = π/2

Soft Segment
Sti� Segment

θm(s) = π/2 * (s/L) 
θw(s) = π/4 - π/8 * (s/L)  

Lorem ipsum

τ1 = 0.49N
Model
Laser Scan

τ1 = 0.69N

τ1 = 0.98N

τ1 = 1.47N

τ1 = 1.96N

Y

X

Fig. 8. Comparison of the model predicted backbone shape with laser-scanned backbone shape for the helical stiffness center prototype. The CAD rendering
on the left shows the geometry of the soft tendon robot with a helically varying bi-material pattern in the cross-section, where the stiff segment becomes
smaller towards the tip. On the right, we show the model-predicted shape and the measured shape of the TDCR at these configurations. With a straight tendon,
pre curvature of the stiffness center causes the direction and magnitude of bending to change along arclength.

the correct deformed shape. The model-predicted curvature
appears to change more smoothly along arclength, wherease
the experimental results generally have high curvature near
the base, become much straighter in the middle section, and
then have higher curvature than the model at the top. These
sharper changes in curvature in the experimental results appear
to correspond to the points along arclength where the tendon
crosses over the interface between the stiff and soft material.
Its possible that there are local deformations at this interface
layer that are not captured in the model, as a result of the
abrupt local change in material properties. While we believe
that the model is still reasonably accurate, local boundary layer
interactions may be important to consider when designing soft
robots with large variations in material stiffness (i.e. much
greater than 10x difference in Young’s Modulus).

EXAMPLE USE CASE: MORE CAPABLE NEUROSURGICAL
TOOLS

Patients with hydrocephalus, a condition often affecting
children, experience elevated pressure within their skulls due

TABLE III
HELICAL N.C. SUMMARY OF MODEL COMPARISON RESULTS

Tendon Tip Error (% of L) Shape Error

Tension ∥p(L)− p̂(L)∥
L∫

s=0

∥p(s)−p̂(s)∥
s

θ
t
=

π
/2

0.49N 1.47mm (1.2%) 2.2%

0.69N 2.85mm (2.4%) 4.0%
0.98N 3.15mm (2.6%) 4.6%
1.47N 3.47mm (2.9%) 6.1%
1.96N 1.69mm (1.4%) 6.6%

to an imbalance in the production and removal of cere-
brospinal fluid. A potentially curative treatment involves cau-
terizing the surface of the choroid plexus, responsible for
cerebrospinal fluid production [58]. Endoscopic Third Ven-
triculostomy (ETV) with Choroid Plexus Cauterization (CPC)
has fewer re-operation rates compared to those who underwent
ventriculoperitoneal shunt (VPS) placement [59]. Clinically
today, the procedure is performed using a neuroendoscope
which is introduced through the frontal cortex into the fluid-
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filled ventricle [58]. These endoscopes have either rigid or
flexible shafts, with tips that can bend in a constant-curvature
arc (see Fig. 9b-c).

With existing neuroendoscopes, it can be challenging to
cauterize the entire choroid plexus from the foramen of
Monro to the posterior temporal horn [60]. A recent technical
review concluded that success of the procedure is more likely
with 90% cauterization coverage of the choroid plexus [61],
however in another study showed the surgeon were only able
to achieve the desired threshold of 90% coverage in 73% of
CPC cases [62]. There is a clear clinical need for endoscopy
tools that are designed so that their workspace can reach a
greater percentage of the desired surface. With current tools
there is a steep learning curve in mastering cauterization of the
choroid plexus. Given variable patient anatomy, it can be very
challenging to reach certain areas of choroid plexus, especially
within the temporal horns.

Prior work toward robotic solutions for this procedure has
explored use of concentric tube robots [63] and multi-tendon
robotic device with nonlinear tendon routing [26], however
both of these solutions are significantly more complex than
existing single DOF manually-operated flexible endoscopes.
We show below that a flexible endoscope with a more general
stiffness profile can reach more of the choroid plexus surface
than current clinical neuroendoscopes without the need for
more complex, multi-DOF robotic actuation systems.

We compare a variable stiffness device (described below)
with the clinical Karl Storz neuroendoscope, which is ap-
proved for use in third ventriculostomy and choroid plexus
cauterization. It is 35 cm long, with an approximately 2
cm long actuated tip that has an angular range of motion
from 0 to 270◦. For the variable stiffness design, we consider
a helically-varying stiffness center, using the same Young’s
modulus parameters for the bi-material cross section as the
physical prototypes described in the prior sections. We placed
the tendon at the geometric center of the prototype so that
when actuated, the neuro-endoscope bends in a roughly helical
shape. The ability to curve in a non-planar shape when
actuated, using a single straight tendon, enables the device to
better navigate around the structures of the brain to reach both
sides of the choroid plexus. The specific design parameters
used in this simulation are presented in Table IV.

To compare the two devices in terms of the kinematic
reachability of the choroid plexus, we assume that both are
introduced through a fixed entry vector into the frontal cortex
to access the ventricle. We segmented the brain and ventricle
from a preoperative MRI of a patient with hydrocephalus
and annotated twenty desired cauterization points across the
choroid plexus. This was performed by a surgeon experienced
with hydrocephalus surgical interventions (co-author Naftel)
to be clinically representative.

For both devices we consider that they can be inserted
axially along the entry vector as desired and axially rotated
about it as desired. The degrees of freedom (DOF) are shown
in Fig. 9a as q1, q2, and q3. The surgical approach and
DOF for both the existing and proposed neuroendoscope
are the same, except the tendon-actuated DOF q3 bends the
existing neuroendoscope into a constant curvature arc while

the proposed design bends according to the model proposed
in this paper.

TABLE IV
ARBITRARY STIFFNESS NEURO-ENDOSCOPE DESIGN PARAMETERS

Parameter Value
Length of Actuated Tip 30cm

Width of Stiff Section θw π/2

Angle of Stiff Section θm π − πs/L

Young’s Modulus of Soft Section E1 0.66MPa

Young’s Modulus of Stiff Section E2 15.93MPa

To compare the performance of the two designs, we solved
the inverse kinematics analytically for the constant curvature
model of the Storz endoscope and numerically (using non-
linear least squares) for the arbitrary stiffness design. Reach-
able points are those where the endoscope tip was within 1mm
of the desired position without penetrating the brain tissue
(pink in Fig. 9).

The clinical endoscope was able to reach fourteen out
of twenty points on the choroid plexus without collisions,
mostly along the superior surface of the choroid plexus, which
aligns with reports in medical literature [60]. In contrast, the
arbitrary stiffness design reached eighteen of the twenty points.
The non-planar actuated shape of the helical stiffness design
enables the device to reach deeper towards the back of the
workspace. The supplementary video demonstrates the results
of the simulation, showing each endoscope navigating through
its respective reachable set of points. Note that while each
reachable point is collision-free, in the animation the motions
between the points were linearly interpolated in joint space,
in future it would be necessary to plan these motions in a
collision-free manner. Note that the helical design was heuris-
tically chosen to demonstrate how arclength-varying curvature
achieved via material variation can enhance a continuum robot,
in the future with design optimization of these parameters it
might be possible to achieve better results.

This case study demonstrates how designs with general stiff-
ness variation have the potential to improve the performance
of clinical tools without requiring added actuation complexity,
such as additional tendons or nonlinear tendon routing. We
note that a variable stiffness endoscope like this could be
fabricated using additive manufacturing (such as the method
used in this paper) or using laser cutting (see e.g., [55]) to
create desired asymmetric stiffness.

We believe that new rapid manufacturing approaches have
great potential to revolutionize healthcare towards the develop-
ment of specialized or modular devices where their properties
can be tailored to a particular surgical application or even
an individual patients anatomy. Rapid prototyping techniques
are continually developing with new technologies that can
be safely using in surgical applications. Vascular stents are
commonly manufactured by lasercutting hyperelastic nitinol
tubes [64], and this rapid fabrication technique is being used to
build new types of continuum robots [56]. Biocompatible 3D
printing workflows have also been developed (see e.g. Form-
labs BioMed series) that may in future be used to manufacture
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Fig. 9. Improving the navigability of a tendon-actuated flexible endoscope. (a) Conceptual image of a tendon-actuated endoscope with a helically varying
stiffness profile over arclength. Two views of the workspace with the clinical endoscope (b, c) and the arclength-varying stiffness design (d, e). Reachable tip
positions shown in black and associated backbone shape in green, unreachable points shown in red.

continuum robots with customized elastic properties. Silicone
3D printing is also being developed for medical applications
[65], as silicone is known to be stable and biocompatible and
commonly used in medical/cosmetic implants. While not the
focus of this work, one key benefit of using stiffness profiles
to design continuum robot motions, is that stiffness elements
can be changed more easily than rerouting actuators. In the
future, we envision continuum robot tools with, for example,
hot-swappable sheaths with specific stiffness properties that
can specialize the robot kinematics for a potential use case.

Once a functional prototype is developed, user testing will
be conducted with neurosurgeons to ensure that they can
comfortably navigate the device throughout its workspace to
reach 90% coverage of the hippocampus. If needed, additional
tendon-operated degrees of freedom could be added to this
design to ensure that this goal is achievable across a range
of patients. We note that deploying this in humans would
require either an investigational device exemption or FDA
clearance/approval, and are looking forward to securing an
industry partner to construct this device under FDA-prescribed
design controls and ultimately translate our results to the
clinic.

DISCUSSION AND CONCLUSION

In this paper, we demonstrate how mapping forces to the
stiffness center enables one to consider it as analogous to
an arbitrarily shaped homogeneous backbone. This enables
one to straightforwardly include stiffness variation across and
along a soft manipulator within the existing Cosserat rod
modeling framework. Using the stiffness center frame in the
model provides an intuitive understanding of how changing the
cross section affects the actuated shape of the manipulator. By

arbitrarily routing the stiffness center along arclength relative
to the location of actuation loads (tendons in our case), one
can change both the magnitude and direction of bending of
the soft arm. This has the effect of mechanically encoding the
configurations of the soft robot to a desired non-planar shape
even with simple, straight-routed tendons.

Overall, we showed that this modeling technique is capable
of capturing the general shape of a multimaterial manipulator
accurately. Of particular note is that no model calibration other
than the stiffness measurements was required to match the
model to experimental results.

Stiffness variation enables the design of soft robots with
task-specific shapes and ranges of motion, without the need
for complex actuation structures, such as nonlinear tendon
routings or fluidic channels. The arrangement of material
stiffness rather than tendon routing within a soft robot may
be scalable to smaller robot designs, for example in con-
tinuum robotic microsurgical tools [66]. Future work could
leverage this new design freedom to create manipulators with
task-specific shape and stiffness profiles. We are particularly
excited about the potential for asymmetric stiffness profiles
in continuum robots that can be dynamically changed during
the use of these robots. Various methods, from material phase
change [67], [68], to frictional jamming techniques [69],
[70]. For example, in our prior work, we proposed using
geometrically patterned low melting point alloys to change
directional stiffness properties in soft tendon-driven robots
[71]. In this work, we validated the Cosserat rod model for
passive stiffening structures, but note that there is an exciting
opportunity to geometrically pattern more complex structures
of active stiffening mechanisms to dynamically reconfigure the
deformation modes during use of the soft robot.
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As our neurosurgical example showed, stiffness variation
can be a particularly important design parameter for small-
diameter robots, in applications that place strong limits on the
types of mechanisms, and number of actuators, that can be
used. General stiffness profiles enabled by advances in additive
manufacturing are a promising design tool to enable more
customizable task-specific endoscope-like manipulators.
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